iditol has been researched along with altritol* in 2 studies
2 other study(ies) available for iditol and altritol
Article | Year |
---|---|
Possibility as monosaccharide laxative of rare sugar alcohols.
Allitol, D-talitol and L-iditol are sugar alcohols that are rare in nature. Due to their previous rarity, little is known about the laxative effects of these rare sugar alcohols. Therefore, reliable data on the laxative effect that these sugar alcohols cause in experimental animals could help to evaluate the effectiveness of new monosaccharide laxative drugs. To investigate the laxative effect of rare sugar alcohols, the study was designed to observe the diarrhea that occurred after oral administration of these sugar alcohols in mice. Moreover, to investigate the influence on intestinal function of rare sugar alcohols, the study was designed to examine small intestine transit and the luminal water content. Results indicated that rare sugar alcohols have a laxative effect in mice. Diarrhea started at a dose of 4.95 g/kg of rare sugar alcohols. There was a statistically significant laxative effect for D-talitol and L-iditol at a dose of 9.9 g/kg as compared to vehicle. Moreover, rare sugar alcohols significantly increased the small intestinal transit and the luminal water content of the small intestine and cecum in mice as compared to each vehicle. Overall, L-iditol greatly changes the function of intestine. In conclusion, rare sugar alcohols increase water content in small intestine and accelerate small intestine transit. These results support laxative effect of rare sugar alcohols. Therefore, rare sugar alcohols may be useful as monosaccharide laxatives and may be used to treat constipation. Topics: Administration, Oral; Animals; Body Water; Constipation; Diarrhea; Gastrointestinal Motility; Intestine, Small; Laxatives; Mice; Mice, Inbred ICR; Monosaccharides; Stimulation, Chemical; Sugar Alcohols | 2009 |
Polyol conversion specificity of Bacillus pallidus.
The conversion specificity of Bacillus pallidus Y25 for polyols, including elusive rare sugar alcohols, was investigated. B. pallidus cells showed transformation potential for several rare polyols, including allitol, L-mannitol, D/L-talitol, and D-iditol, and converted them to their corresponding ketoses. This indicates that the bacterium had two polyol dehydrogenases specific for polyols that have D-erythro and D-threo configurations. By combination with intrinsic isomerases, polyols were converted directly to various aldoses, including L-xylose, L-talose, D-altrose, and L-glucose. Topics: Bacillus; Biotransformation; Mannitol; Oxidoreductases; Polymers; Substrate Specificity; Sugar Alcohols | 2008 |