ici-154129 has been researched along with morphiceptin* in 2 studies
2 other study(ies) available for ici-154129 and morphiceptin
Article | Year |
---|---|
Characterization of opioid receptors in the cat carotid body involved in chemosensory depression in vivo.
The effects of selective opioid receptor agonists and antagonists on neural discharge recorded from carotid body arterial chemoreceptors in vivo were studied in anaesthetized cats. Mean ID50 values were determined for each agonist and used to assess chemodepressant potency on intracarotid (i.c.) injection in animals artificially ventilated with air. [Met]enkephalin, [Leu]enkephalin, [D-Ala2, D-Leu5]enkephalin and [D-Pen2, D-Pen5]enkephalin were more potent chemodepressants than [D-Ala2, Me-Phe4, Gly-ol5]enkephalin, dynorphin (1-8) or ethylketocyclazocine; morphiceptin (mu-agonist) was inactive. The rank order of potency was compatible with the involvement of delta-opioid receptors in opioid-induced depression of chemosensory discharge. ICI 154129, a delta-opioid receptor antagonist, was used in fairly high doses and caused reversible dose-related antagonism of chemodepression induced by [Met]enkephalin. It also antagonized depression caused by single doses of [Leu]enkephalin, [D-Ala2, D-Leu5]enkephalin, [D-Ala2, Me-Phe4, Gly-ol5]enkephalin or dynorphin (1-8). ICI 174864, a more potent and selective delta-opioid receptor antagonist, also antagonized chemodepression induced by [Met]enkephalin or by the selective delta-receptor agonist [D-Pen2, D-Pen5]enkephalin. Comparison of background or 'spontaneous' chemosensory discharge during the 30 min periods immediately before and after injecting ICI 174864 (0.1-0.2 mg kg-1 i.c.) showed a significant increase in discharge in one experiment, but in four others discharge was either unaffected or decreased after the antagonist, which argues against a toxic depression of chemosensors by endogenous opioids under resting conditions in our preparation. Sensitivity of the carotid chemoreceptors to hypoxia (ventilating with 10% O2) was increased significantly after ICI 174864, which could be taken as evidence that endogenous opioids depress chemosensitivity during hypoxia. In contrast, responsiveness to hypercapnia was reduced after the antagonist, implying that endogenous opioids may potentiate chemoreceptor sensitivity during hypercapnia. The results obtained using 'selective' agonists and antagonists provide evidence that depression of chemosensory discharge caused by injected opioids involves a delta type of opioid receptor within the cat carotid body. Endogenous opioids may modulate arterial chemoreceptor sensitivity to physiological stimuli such as hypoxia and hypercapnia. Topics: Animals; Carotid Body; Cats; Chemoreceptor Cells; Cyclazocine; Dose-Response Relationship, Drug; Dynorphins; Endorphins; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Enkephalin, Leucine; Enkephalin, Leucine-2-Alanine; Enkephalin, Methionine; Enkephalins; Ethylketocyclazocine; Hypercapnia; Hypoxia; Peptide Fragments; Receptors, Opioid | 1986 |
Opiate-induced seizures: a study of mu and delta specific mechanisms.
Two groups of experiments were conducted to determine if morphine- and enkephalin-induced seizures are specifically mediated by the mu and delta receptor, respectively. In the first experiments, designed to assess the ontogeny of mu- or delta-seizures, rats from 6 h to 85 days of age received implanted cortical and depth electrodes as well as an indwelling cannula in the lateral ventricle. Various amounts of the mu-receptor agonists, morphine and morphiceptin, and the delta agonists, D-Ala2-D-Leu5-enkephalin (DADL) and Tyr-D-Ser-Gly-Phe-Leu-Thr (DSLET), were then administered intracerebroventricularly (icv) with continuous EEG monitoring. The second experiments entailed use of the nonspecific opiate antagonist, naloxone, as well as the specific delta antagonist, ICI 154,129, against seizures induced by icv-administered morphine, morphiceptin, DADL, or DSLET. Both morphine and morphiceptin produced electrical seizure activity in rats as young as 5 days after birth. The drugs produced similar seizure activity in terms of electrical morphology, observed behavior, ontogeny, threshold dose, and reversibility with small doses of naloxone. In the pharmacologic experiments, icv naloxone blocked all opiate-induced seizures. ICI 154,129 blocked DSLET seizure, had little effect on enkephalin or DADL seizures, and no effect on morphine or morphiceptin seizures. These data indicate that DSLET seizures are delta-specific but that all other opiate-induced seizures studied may involve multiple opiate receptor-mediated mechanisms. Topics: Animals; Electroencephalography; Endorphins; Enkephalin, Leucine; Enkephalin, Leucine-2-Alanine; Morphine; Narcotics; Oligopeptides; Rats; Receptors, Opioid; Receptors, Opioid, delta; Receptors, Opioid, mu; Seizures | 1986 |