icatibant has been researched along with capsazepine* in 4 studies
4 other study(ies) available for icatibant and capsazepine
Article | Year |
---|---|
Involvement of the TRPV1 receptor in plasma extravasation in airways of rats treated with an angiotensin-converting enzyme inhibitor.
Angiotensin-converting enzyme inhibitors (ACEIs) are widely used in the treatment of hypertension, congestive heart failure and renal disease, and are considered relatively safe and generally well-tolerated drugs. However, adverse effects of ACEIs have been reported, including non-productive cough and angioedema, which can lead to poor adherence to therapy. The mechanisms by which ACEIs promote adverse effects are not fully elucidated, although increased bradykinin plasma levels following ACEI therapy seem to play an important role. Since bradykinin can sensitise the transient potential vanilloid receptor 1 (TRPV1), we investigated the role of TRPV1 in plasma extravasation in the trachea and bronchi of rats treated with the ACEI captopril. We observed that intravenous (i.v.) administration of captopril did not cause plasma extravasation in the trachea or bronchi of spontaneously breathing rats, but induced plasma extravasation in the trachea and bronchi of artificially ventilated rats. The intratracheal (i.t.) instillation of capsaicin or bradykinin also induced an increase in plasma extravasation in the trachea and bronchi of artificially ventilated rats. As expected, capsaicin-induced plasma extravasation was inhibited by i.t. pretreatment with the TRPV1 selective antagonist capsazepine (CPZ) while bradykinin-induced plasma extravasation was reduced by i.t. pretreatment with the selective B Topics: Angiotensin-Converting Enzyme Inhibitors; Animals; Animals, Newborn; Bradykinin; Bronchi; Capillary Permeability; Capsaicin; Captopril; Male; Plasma; Rats; Rats, Wistar; Trachea; TRPV Cation Channels | 2016 |
Mechanisms involved in the nociception produced by peripheral protein kinase c activation in mice.
Protein kinase C (PKC) is able to phosphorylate several cellular components that serve as key regulatory components in signal transduction pathways of nociceptor excitation and sensitisation. Therefore, the present study attempted to assess some of the mechanisms involved in the overt nociception elicited by peripheral administration of the PKC activator, phorbol 12-myristate 13-acetate (PMA), in mice. The intraplantar (i.pl.) injection of PMA (16-1600 pmol/paw), but not its inactive analogue alpha-PMA, produced a long-lasting overt nociception (up to 45 min), as well as the activation of PKCalpha and PKCepsilon isoforms in treated paws. Indeed, the local administration of the PKC inhibitor GF109203X completely blocked PMA-induced nociception. The blockade of NK1, CGRP, NMDA, beta1-adrenergic, B2 or TRPV1 receptors with selective antagonists partially decreased PMA-induced nociception. Similarly, COX-1, COX-2, MEK or p38 MAP kinase inhibitors reduced the nociceptive effect produced by PMA. Notably, the nociceptive effect promoted by PMA was diminished in animals treated with an antagonist of IL-1beta receptor or with antibodies against TNFalpha, NGF or BDNF, but not against GDNF. Finally, mast cells as well as capsaicin-sensitive and sympathetic fibres, but not neutrophil influx, mediated the nociceptive effect produced by PMA. Collectively, the results of the present study have shown that PMA injection into the mouse paw results in PKC activation as well as a relatively delayed, but long-lasting, overt nociceptive behaviour in mice. Moreover, these results demonstrate that PKC activation exerts a critical role in modulating the excitability of sensory neurons. Topics: Adrenergic beta-Antagonists; Analgesics; Animals; Antibodies; Behavior, Animal; Blotting, Western; Bradykinin; Calcitonin Gene-Related Peptide; Capsaicin; Chelating Agents; Dipeptides; Dizocilpine Maleate; Dose-Response Relationship, Drug; Drug Interactions; Egtazic Acid; Enzyme Activation; Enzyme Inhibitors; Excitatory Amino Acid Antagonists; Extracellular Signal-Regulated MAP Kinases; Guanethidine; Indoles; Male; Mice; Nociceptors; Pain; Pain Measurement; Peptide Fragments; Propranolol; Protein Kinase C; Ruthenium Red; Salicylates; Sympatholytics; Tetradecanoylphorbol Acetate; Time Factors | 2005 |
Involvement of vanilloid receptor VR1 and prostanoids in the acid-induced writhing responses of mice.
We found that intraperitoneal injection of organic acids, such as propionic and lactic acid, are able to develop writhing responses in mice similarly as that of acetic acid. These acid-induced writhing reactions were significantly attenuated by capsazepine, a VR1 receptor-specific antagonist, but the phenylbenzoquinone-induced one was not, suggesting that the acids but not phenylbenzoquinone activate the VR1 receptor, which is involved in polymodal pain perception. Hoe 140, a bradykinin B2 receptor antagonist, also suppressed the acid-induced writhing response. Furthermore, these writhing responses were significantly suppressed after neonatal treatment with capsaicin, which treatment is known to destroy peripheral sensory afferent C-fibers. Capsazepine and Hoe 140 did not further attenuate the already reduced writhing responses of capsaicin-treated mice, suggesting that the acids stimulate the VR1 and the bradykinin B2 receptor in the pathway comprising sensory afferent C-fibers. On the other hand, indomethacin further significantly suppressed the writhing number of the capsaicin-treated animals, suggesting that the acid-induced pain perception requires prostanoid receptors not only in the pathway via capsaicin-sensitive C-fibers but also in other sensory pathways. These results provide the first evidence for the involvement of the vanilloid receptor in the acid-induced inflammatory pain perception via sensory C-fibers in addition to the known mediators bradykinin, neurokinins, and prostanoids. Topics: Acetic Acid; Animals; Animals, Newborn; Anti-Inflammatory Agents, Non-Steroidal; Behavior, Animal; Benzoquinones; Bradykinin; Capsaicin; Disease Models, Animal; Female; Indomethacin; Lactic Acid; Male; Mice; Mice, Inbred ICR; Pain; Pain Measurement; Propionates; Prostaglandins; Receptors, Drug; Receptors, Prostaglandin | 2001 |
Involvement of kinins, mast cells and sensory neurons in the plasma exudation and paw oedema induced by staphylococcal enterotoxin B in the mouse.
Intraplantar injection of staphylococcal enterotoxin B induces long-lasting oedema mediated by both cyclooxygenase and lipoxygenase products as well as by neuropeptides from sensory nerves. This study was undertaken to further clarify the role of peripheral primary afferent sensory nerves in staphylococcal enterotoxin B (25 microg/paw)-induced plasma extravasation and oedema formation. The tachykinin NK(1) receptor antagonist (S)-1-[2-[3-(3, 4-dichlorophenyl)-1 (3-isopropoxyphenylacetyl)piperidin-3-yl] ethyl]-4-phenyl-1 azoniabicyclo [2.2.2]octane cloride (SR140333; 120 nmol/kg, s.c.+120 nmol/kg, i.v.) significantly inhibited plasma exudation and paw oedema evoked by staphylococcal enterotoxin B. The tachykinin NK(2) receptor antagonist (S)-N-methyl-N[4-(4-acetylamino-4-phenyl piperidino)-2-(3, 4-dichlorophenyl)butyl]-benzamide (SR48968) had no effect on the staphylococcal enterotoxin B-induced responses. The bradykinin B(2) receptor antagonist D-Arg-[Hyp(3),Thi(5),D-Tic(7),Oic(8)]bradykinin (Hoe 140; 400 nmol/kg, i.v.) significantly reduced staphylococcal enterotoxin B-induced responses. The magnitude of the inhibition observed with Hoe 140 alone was similar to that caused by concomitant treatment of animals with SR140333 and Hoe 140, suggesting that there is a final common pathway. Additionally, SR140333 given alone reduced bradykinin (3 nmol/paw)-induced paw oedema. The vanilloid receptor antagonist N-[2-(4-chlorophenyl) ethyl]-1,3,4,5-tetrahydro-7, 8-dihydroxy-2H-2-benzazepine-2-carbothioamide (capsazepine; 100 micromol/kg) significantly reduced staphylococcal enterotoxin B-induced responses. The 5-HT receptor antagonist methysergide (10 mg/kg, i.v.) and the histamine H(1) receptor antagonist mepyramine (10 mg/kg, i.v.) produced a significant reduction in paw oedema whereas plasma exudation was reduced only by methysergide. In diabetic mice, exudation and oedema evoked by staphylococcal enterotoxin B were markedly reduced. Acute administration of insulin (20 UI/kg, s.c., 30 min before) did not restore the increased permeability induced by staphylococcal enterotoxin B. We conclude that plasma exudation and paw oedema in response to staphylococcal enterotoxin B are a consequence of a complex neurogenic response involving direct activation of vanilloid receptors on sensory nerves, release of kinins and subsequent activation of bradykinin B(2) receptors at a prejunctional level, and direct or indirect degranulation of mast cells. Topics: Animals; Benzamides; Bradykinin; Capillary Permeability; Capsaicin; Diabetes Mellitus, Experimental; Edema; Enterotoxins; Hindlimb; Kinins; Male; Mast Cells; Mice; Neurokinin-1 Receptor Antagonists; Neurons, Afferent; Piperidines; Pyrilamine; Quinuclidines; Receptors, Neurokinin-2 | 2000 |