ibutilide has been researched along with phenytoin in 6 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 2 (33.33) | 29.6817 |
2010's | 4 (66.67) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Du, LP; Li, MY; Tsai, KC; Xia, L; You, QD | 1 |
Benz, RD; Contrera, JF; Kruhlak, NL; Matthews, EJ; Weaver, JL | 1 |
Sen, S; Sinha, N | 1 |
Chang, G; Di, L; Huang, Y; Lin, Z; Liston, TE; Scott, DO; Troutman, MD; Umland, JP | 1 |
Brown, AM; Bruening-Wright, A; Kramer, J; Kuryshev, YA; Myatt, G; Obejero-Paz, CA; Verducci, JS | 1 |
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
1 review(s) available for ibutilide and phenytoin
Article | Year |
---|---|
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
5 other study(ies) available for ibutilide and phenytoin
Article | Year |
---|---|
The pharmacophore hypotheses of I(Kr) potassium channel blockers: novel class III antiarrhythmic agents.
Topics: Anti-Arrhythmia Agents; Models, Biological; Models, Molecular; Potassium Channel Blockers; Potassium Channels; Quantitative Structure-Activity Relationship; Technology, Pharmaceutical | 2004 |
Assessment of the health effects of chemicals in humans: II. Construction of an adverse effects database for QSAR modeling.
Topics: Adverse Drug Reaction Reporting Systems; Artificial Intelligence; Computers; Databases, Factual; Drug Prescriptions; Drug-Related Side Effects and Adverse Reactions; Endpoint Determination; Models, Molecular; Quantitative Structure-Activity Relationship; Software; United States; United States Food and Drug Administration | 2004 |
Predicting hERG activities of compounds from their 3D structures: development and evaluation of a global descriptors based QSAR model.
Topics: Computer Simulation; Ether-A-Go-Go Potassium Channels; Humans; Molecular Structure; Organic Chemicals; Quantitative Structure-Activity Relationship | 2011 |
Species independence in brain tissue binding using brain homogenates.
Topics: Animals; Brain; Dogs; Guinea Pigs; Humans; Macaca fascicularis; Mice; Rats; Species Specificity | 2011 |
MICE models: superior to the HERG model in predicting Torsade de Pointes.
Topics: ERG1 Potassium Channel; Ether-A-Go-Go Potassium Channels; Humans; Models, Theoretical; Patch-Clamp Techniques; Predictive Value of Tests; Torsades de Pointes | 2013 |