hyperoside and 3-nitrotyrosine

hyperoside has been researched along with 3-nitrotyrosine* in 1 studies

Other Studies

1 other study(ies) available for hyperoside and 3-nitrotyrosine

ArticleYear
Protective effect of hyperoside against acetaminophen (APAP) induced liver injury through enhancement of APAP clearance.
    Chemico-biological interactions, 2016, Feb-25, Volume: 246

    Acetaminphen (APAP) overdose leads to severe hepatotoxicity. Apocynum venetum L. (A. venetum) possess potent hepatoprotective effect. Hyperoside is one of the major compounds exist in Apocynum venetum L. and might be a potential agent to protect against APAP-induce liver injury. In this study, we investigated the effect of hyperoside on APAP hepatotoxicity in mice. Mice were treated intragastrically with hyperoside (10, 50 or 100 mg/kg) for 3 days before APAP (300 mg/kg) injection. APAP alone caused severe liver injury characterized by significantly increased serum aminotransferase levels, hepatic malondialdehyde (MDA) and 3-nitrotyrosine (3-NT) formation, as well as liver superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione (GSH) depletions. Hyperoside significantly attenuated APAP-induced liver damages in a dose dependent manner, and 100 mg/kg was the most effective dose. Further study confirmed that hyperoside was able to increase activities and mRNA expressions of uridine diphoshate glucuronosyltransferases (UGTs) and sulfotransferases (SULTs), as well as to inhibit CYP2E1 activities, and thereby suppressed toxic intermediate formation and promoted APAP hepatic detoxification. Nrf-2 activation might be involved in hyperoside induced up-regulation of phase II enzymes. Collectively, our data provide evidence that hyperoside protected the liver against APAP induced injury mainly by accelerating APAP harmless metabolism, implying that hyperoside can be considered as a potential natural hepatoprotective agent.

    Topics: Acetaminophen; Animals; Chemical and Drug Induced Liver Injury; Cytochrome P-450 CYP2E1; Drug Overdose; Gene Expression Regulation, Enzymologic; Glucuronosyltransferase; Liver; Male; Mice; NF-E2-Related Factor 2; Oxidative Stress; Quercetin; RNA, Messenger; Sulfotransferases; Tyrosine

2016