hymenialdisine and debromohymenialdisine

hymenialdisine has been researched along with debromohymenialdisine* in 3 studies

Other Studies

3 other study(ies) available for hymenialdisine and debromohymenialdisine

ArticleYear
Cultivation of fractionated cells from a bioactive-alkaloid-bearing marine sponge Axinella sp.
    In vitro cellular & developmental biology. Animal, 2021, Volume: 57, Issue:5

    Sponges are among the most primitive multicellular organisms and well-known as a major source of marine natural products. Cultivation of sponge cells has long been an attractive topic due to the prominent evolutionary and cytological significance of sponges and as a potential approach to supply sponge-derived compounds. Sponge cell culture is carried out through culturing organized cell aggregates called 'primmorphs.' Most research culturing sponge cells has used unfractionated cells to develop primmorphs. In the current study, a tropical marine sponge Axinella sp., which contains the bioactive alkaloids, debromohymenialdisine (DBH), and hymenialdisine (HD), was used to obtain fractionated cells and the corresponding primmorphs. These alkaloids, DBH and HD, reportedly show pharmacological activities for treating osteoarthritis and Alzheimer's disease. Three different cell fractions were obtained, including enriched spherulous cells, large mesohyl cells, and small epithelial cells. These cell fractions were cultivated separately, forming aggregates that later developed into different kinds of primmorphs. The three kinds of primmorphs obtained were compared as regards to appearance, morphogenesis, and cellular composition. Additionally, the amount of alkaloid in the primmorphs-culture system was examined over a 30-d culturing period. During the culturing of enriched spherulous cells and developed primmorphs, the total amount of alkaloid declined notably. In addition, the speculation of alkaloid secretion and some phenomena that occurred during cell culturing are discussed.

    Topics: Animals; Axinella; Azepines; Cell Fractionation; Cells, Cultured; Pyrroles

2021
Cellular localization of debromohymenialdisine and hymenialdisine in the marine sponge Axinella sp. using a newly developed cell purification protocol.
    Marine biotechnology (New York, N.Y.), 2011, Volume: 13, Issue:5

    Sponges (Porifera), as the best known source of bioactive marine natural products in metazoans, play a significant role in marine drug discovery and development. As sessile filter-feeding animals, a considerable portion of the sponge biomass can be made of endosymbiotic and associated microorganisms. Understanding the cellular origin of targeted bioactive compounds from sponges is therefore important not only for providing chemotaxonomic information but also for defining the bioactive production strategy in terms of sponge aquaculture, cell culture, or fermentation of associated bacteria. The two alkaloids debromohymenialdisine (DBH) and hymenialdisine (HD), which are cyclin-dependent kinase inhibitors with pharmacological activities for treating osteoarthritis and Alzheimer's disease, have been isolated from the sponge Axinella sp. In this study, the cellular localization of these two alkaloids was determined through the quantification of these alkaloids in different cell fractions by high-performance liquid chromatography (HPLC). First, using a differential centrifugation method, the dissociated cells were separated into different groups according to their sizes. The two bioactive alkaloids were mainly found in sponge cells obtained from low-speed centrifugation. Further cell purifications were accomplished by a newly developed multi-step protocol. Four enriched cell fractions (C1, C2, C3, and C4) were obtained and subjected to light and transmission electron microscopy, cytochemical staining, and HPLC quantification. Compared to the low concentrations in other cell fractions, DBH and HD accounted for 10.9% and 6.1%, respectively, of dry weight in the C1 fraction. Using the morphological characteristics and cytochemical staining results, cells in the C1 fraction were speculated to be spherulous cells. This result shows that DBH and HD in Axinella sp. are located in sponge cells and mostly stored in spherulous cells.

    Topics: Animals; Azepines; Bacteria; Cell Separation; Porifera; Protein Transport; Pyrroles

2011
A new glycociamidine ring precursor: syntheses of (Z)-hymenialdisine, (Z)-2-debromohymenialdisine, and (+/-)-endo-2-debromohymenialdisine.
    Organic letters, 2005, Dec-08, Volume: 7, Issue:25

    [chemical reaction: see text]. The synthesis of the C11H5 marine sponge alkaloids, (Z)-hymenialdisine and (Z)-2-debromohymenialdisine, is described. A key step was the condensation between aldisine or its monobromo derivative and a new, efficient imidazolinone-based glycociamidine precursor. In the first case, the main product turned out to be the unprecedented (+/-)-endo-2-debromohymenialdisine.

    Topics: Alkaloids; Animals; Azepines; Cyclization; Marine Biology; Molecular Structure; Porifera; Pyrroles; Stereoisomerism

2005