hydroxytyrosyl-acetate and 3-4-dihydroxyphenylethanol

hydroxytyrosyl-acetate has been researched along with 3-4-dihydroxyphenylethanol* in 11 studies

Other Studies

11 other study(ies) available for hydroxytyrosyl-acetate and 3-4-dihydroxyphenylethanol

ArticleYear
Olive-Oil-Derived Polyphenols Effectively Attenuate Inflammatory Responses of Human Keratinocytes by Interfering with the NF-κB Pathway.
    Molecular nutrition & food research, 2019, Volume: 63, Issue:21

    Extra virgin olive oil (EVOO) is rich in phenolic compounds, including hydroxytyrosol (HTy) and hydroxytyrosyl acetate (HTy-Ac), which have presented multiple beneficial properties. Their impact on inflammatory responses in human keratinocytes and modes of action have not been addressed yet.. Primary human keratinocytes are pretreated with HTy-Ac or HTy for 30 min and stimulated with IL-1β or Toll-like receptor 3 ligand (TLR3-l). Thymic stromal lymphopoietin (TSLP), measured by ELISA, is attenuated by both polyphenols in a dose-dependent manner. The expression of several inflammation-related genes, including distinct TSLP isoforms and IL-8, are assessed by quantitative RT-PCR and likewise inhibited by HTy-Ac/HTy. Mechanistically, EVOO phenols counteracts IκB degradation and translocation of NF-κB to the nucleus, a transcription factor of essential significance to TSLP and IL-8 transcriptional activity; this is evidenced by immunoblotting. Accordingly, NF-κB recruitment to critical binding sites in the TSLP and IL-8 promoter is impeded in the presence of HTy-Ac/HTy, as demonstrated by chromatin immunoprecipitation. Promoter reporter assays finally reveal that the neutralizing effect on NF-κB induction has functional consequences, resulting in reduced NF-κB-directed transcription.. EVOO phenols afford protection from inflammation in human keratinocytes by interference with the NF-κB pathway.

    Topics: Acetates; Catechols; Cell Survival; Cytokines; Dermatitis; Dose-Response Relationship, Drug; Gene Expression Regulation; Humans; Infant, Newborn; Inflammation Mediators; Keratinocytes; Male; NF-kappa B; Olive Oil; Phenylethyl Alcohol; Polyphenols; Promoter Regions, Genetic; Signal Transduction

2019
Antibacterial Activity of Hydroxytyrosol Acetate from Olive Leaves (Olea Europaea L.).
    Natural product research, 2018, Volume: 32, Issue:16

    Vibrio spp. are pathogens of many bacterial diseases which have caused great economic losses in marine aquaculture. The strategy of alternative medical treatment that is utilised by herbalists has expanded in the past decade. The aim of our study is to discover the antibacterial molecules against Vibrio spp. Bacterial growth inhibition, membrane permeabilisation assessment and DNA interaction assays, as well as agarose gel electrophoresis, were employed to elucidate the antibacterial activity of hydroxytyrosol acetate. Results showed that hydroxytyrosol acetate had antibacterial activity against Vibrio spp. and it played the role via increasing bacterial membrane permeabilisation. The DNA interaction assay and agarose gel electrophoresis revealed that hydroxytyrosol acetate interacted with DNA. Hydroxytyrosol acetate enhanced the fluorescent intensity of DNA binding molecules and mediated supercoiled DNA relaxation. The present study provides more evidence that hydroxytyrosol acetate is a novel antibacterial candidate against Vibrio spp.

    Topics: Acetates; Anti-Bacterial Agents; Catechols; Cell Membrane Permeability; DNA, Bacterial; Olea; Phenylethyl Alcohol; Plant Extracts; Vibrio

2018
Comparative evaluation of the metabolic effects of hydroxytyrosol and its lipophilic derivatives (hydroxytyrosyl acetate and ethyl hydroxytyrosyl ether) in hypercholesterolemic rats.
    Food & function, 2014, Jul-25, Volume: 5, Issue:7

    Hydroxytyrosol (HT), a virgin olive oil phenolic phytochemical with proven health benefits, has been used to generate new lipophilic antioxidants to preserve fats and oils against autoxidation. The aim of this work is to comparatively evaluate the physiological effects of HT and its lipophilic derivatives, hydroxytyrosyl acetate (HT-Ac) and ethyl hydroxytyrosyl ether (HT-Et), in high-cholesterol fed animals. Male Wistar rats (n = 8) were fed a standard diet (C group), a cholesterol-rich diet (Chol group) or a cholesterol-rich diet supplemented with phenolic compounds (HT group, HT-Ac group and HT-Et group) for 8 weeks. Body and tissue weights, the lipid profile, redox status, and biochemical, hormonal, and inflammatory biomarkers were evaluated. Plasma levels of total cholesterol, LDL cholesterol, glucose, insulin and leptin, as well as malondialdehyde in serum increased in Chol compared to C (p < 0.05). Rats fed the test diets had improved glucose, insulin, leptin and MDA levels and antioxidant capacity status, with HT-Ac being the most effective compound. The studied phenolic compounds also modulated TNF-α and IL-1β plasma levels compared to Chol. HT-Ac and HT-Et improved adipose tissue distribution and adipokine production, decreasing MCP-1 and IL-1β levels. Our results confirm the metabolic effects of HT, which are maintained and even improved by hydrophobic derivatives, particularly HT-Ac.

    Topics: Acetates; Animals; Antioxidants; Blood Glucose; Catechols; Chemokine CCL2; Cholesterol, Dietary; Cholesterol, HDL; Cholesterol, LDL; Diet, High-Fat; Hypercholesterolemia; Interleukin-1beta; Interleukin-6; Male; Malondialdehyde; Olive Oil; Phenols; Phenylethyl Alcohol; Phytochemicals; Plant Oils; Plasminogen Activator Inhibitor 1; Rats; Rats, Wistar; Tumor Necrosis Factor-alpha

2014
Faecal microbial metabolism of olive oil phenolic compounds: in vitro and in vivo approaches.
    Molecular nutrition & food research, 2014, Volume: 58, Issue:9

    In the present study, the individual colonic metabolism of the main components of the virgin olive oil phenolic fraction was evaluated by an in vitro model using human faecal microbiota. To assess differences in metabolism related to the molecular structure, four phenolic standards were selected, tyrosol, hydroxytyrosol, hydroxytyrosol acetate and oleuropein. After studying the in vitro colonic metabolism pathways of the individual phenols, the presence of their colonic metabolites was investigated in human faecal samples obtained before and after the sustained intake (3 weeks) of a daily dose of 25 mL of a phenol-enriched olive oil.. The in vitro colon fermentation of the four individual phenolic compounds revealed (i) an increase in phenolic acids, (ii) the stability of hydroxytyrosol and tyrosol and (iii) the high degradation of hydroxytyrosol acetate and oleuropein. Additionally, a moderate intake of a phenol-rich olive oil raised the concentration in human faeces of free hydroxytyrosol and phenylacetic and phenylpropionic acids.. The products of colonic catabolism of olive oil phenolic compounds could be good candidates for novel preventive strategies and open a promising line of research into the preventive action of olive oil phenols in colon and other bowel diseases.

    Topics: Acetates; Catechols; Colon; Feces; Fermentation; Humans; In Vitro Techniques; Iridoid Glucosides; Iridoids; Kinetics; Microbiota; Nontherapeutic Human Experimentation; Olive Oil; Phenols; Phenylethyl Alcohol; Plant Oils

2014
Digestive stability of hydroxytyrosol, hydroxytyrosyl acetate and alkyl hydroxytyrosyl ethers.
    International journal of food sciences and nutrition, 2012, Volume: 63, Issue:6

    The digestive stability of two natural antioxidant compounds present in virgin olive oil, hydroxytyrosol (HTy) and hydroxytyrosyl acetate (HTy-Ac) and a new series of hydroxytyrosyl ethers (methyl, ethyl and butyl hydroxytyrosyl ethers) was evaluated by a simulated digestion procedure. High recovery of all compounds after gastric digestion was obtained, although they showed a statistically significant lower stability after pancreatic-bile salts digestion. HTy-Ac was partially hydrolyzed into free HTy, whereas after intestinal digestion, HTy was converted into 3,4-dihydroxyphenyl acetic acid (DOPAC), and HTy-Ac was hydrolyzed to HTy and subsequently transformed into DOPAC. In contrast, no chemical modification of hydroxytyrosyl ethers during in vitro digestion was observed. In summary, HTy, HTy-Ac and hydroxytyrosyl ethers show high and interesting digestive stability and the new synthetic hydroxytyrosyl ethers showed enhanced chemical stability compared to HTy and HTy-Ac.

    Topics: 3,4-Dihydroxyphenylacetic Acid; Acetates; Antioxidants; Bile Acids and Salts; Catechols; Ethers; Hydrolysis; Molecular Structure; Olive Oil; Pancreatin; Pepsin A; Phenylethyl Alcohol; Plant Oils

2012
Distribution of hydroxytyrosol and hydroxytyrosol acetate in olive oil emulsions and their antioxidant efficiency.
    Journal of agricultural and food chemistry, 2012, Jul-25, Volume: 60, Issue:29

    We employed a kinetic method to determine the distributions of the antioxidants hydroxytyrosol (HT) and hydroxytyrosol acetate (HTA) between the oil, aqueous, and interfacial regions of a model food emulsion composed of stripped olive oil, acidic water, and a blend of Tween 80 and Span 80 [hydrophilic–lipophilic balance (HLB) = 8.05] as an emulsifier. HT is oil-insoluble, but HTA is both oil- and water-soluble (partition constant P(O)(W) = 0.61). Results indicate that, at a given emulsifier volume fraction Φ(I), the fraction of HTA in the interfacial region is higher than that of HT. The percentage of both antioxidants increases with an increasing Φ(I), so that % HT > 40% at Φ(I) = 0.005 and % HT > 80% at Φ(I) = 0.04. HTA appears to be a better antioxidant than HT, as shown by an accelerated oxidative test (Schaal oven method). A correlation between their distribution in the emulsion and their efficiency was established.

    Topics: Acetates; Antioxidants; Catechols; Emulsions; Olive Oil; Phenylethyl Alcohol; Plant Oils; Solubility

2012
Hydroxytyrosol acyl esters: biosynthesis and activities.
    Applied biochemistry and biotechnology, 2011, Volume: 163, Issue:5

    We previously reported the production of high yields of hydroxytyrosol through the bioconversion of tyrosol. In the present work, hydroxytyrosol was subjected to the lipase catalyzed acylation aiming for the recovery of more lipophilic esters that might be easily incorporated in cosmetic and food preparations. Hydroxytyrosyl acetate and hydroxytyrosyl oleate were produced with respective molar esterification yields of 98% and 78%. DPPH free radical quenching potency demonstrated that the acylation of hydroxytyrosol did not alter its antioxidant activity. The acylated esters were shown to be more effective than the natural antioxidant: caffeic acid and two synthetic ones as BHA and BHT. Antiproliferative activity on human cervical cells (HeLa) resulted in IC(50) values of 0.46, 0.42 and 0.33 mM for hydroxytyrosol and its acetyl and oleyl esters, respectively. Additionally, when used at a non-cytotoxic concentration (100 μM), these compounds showed significant effectiveness in preventing iron-induced oxidative stress, resulting in a reduction of 30%, 36% and 38% in thiobarbituric acid-reactive substance production, respectively.

    Topics: Acetates; Catechols; Cell Proliferation; Enzymes, Immobilized; Esterification; Fungal Proteins; HeLa Cells; Humans; Lipase; Oxidative Stress; Phenylethyl Alcohol

2011
Virgin olive oil polyphenol hydroxytyrosol acetate inhibits in vitro platelet aggregation in human whole blood: comparison with hydroxytyrosol and acetylsalicylic acid.
    The British journal of nutrition, 2009, Volume: 101, Issue:8

    Hydroxytyrosol acetate (HT-AC) is a polyphenol present in virgin olive oil (VOO) at a proportion similar to hydroxytyrosol (HT) (160-479 micromol/kg oil). The present study was designed to measure the in vitro platelet antiaggregating activity of HT-AC in human whole blood, and compare this effect with that of HT and acetylsalicylic acid (ASA). The experiments were designed according to the standard procedure to investigate the activity of ASA. HT-AC and HT inhibited platelet aggregation induced by ADP, collagen or arachidonic acid in both whole blood and platelet-rich plasma (PRP). ASA and HT-AC had a greater effect in whole blood than in PRP when ADP or collagen was used as inducer. ASA and HT-AC had a greater effect in PRP+leucocytes than in PRP alone. All three compounds inhibited platelet thromboxane B2 and leucocyte 6-keto-prostaglandin F1alpha (6-keto-PF1 alpha) production. The thromboxane/6-keto-PGF1alpha inhibition ratio (as an indirect index of the prostanoid equilibrium) was 10.8 (SE 1) for HT-AC, 1.0 (SE 0.1) for HT and 3.3 (SE 0.2) for ASA. All three compounds stimulated nitric oxide production, although HT was a weaker effect. In our experiments only concentrations higher than 500 microm (HT) or 1 mm (HT-AC and ASA) inhibited 3-nitrotyrosine production. All three compounds inhibited the production of TNFalpha by leucocytes, with no significant differences between them. In quantitative terms HT-AC showed a greater antiplatelet aggregating activity than HT and a similar activity to that of ASA. This effect involved a decrease in platelet thromboxane synthesis and an increase in leucocyte nitric oxide production.

    Topics: 6-Ketoprostaglandin F1 alpha; Acetates; Adult; Aspirin; Blood Platelets; Catechols; Dose-Response Relationship, Drug; Female; Humans; Leukocytes; Male; Nitric Oxide; Olive Oil; Phenylethyl Alcohol; Plant Oils; Platelet Aggregation; Thromboxane B2

2009
Effects of hydroxytyrosol and hydroxytyrosol acetate administration to rats on platelet function compared to acetylsalicylic acid.
    Journal of agricultural and food chemistry, 2008, Sep-10, Volume: 56, Issue:17

    Virgin olive oil (VOO) contains the polyphenols hydroxytyrosol (HT) and hydroxytyrosol acetate (HT-AC). This study investigated the antiplatelet effect of HT and HT-AC in healthy rats and compared their effects to acetylsalicylic acid (ASA). All compounds were administered orally for 7 days. HT and HT-AC inhibited platelet aggregation in whole blood, with a 50% inhibitory dose (ID50) of 48.25 mg/kg per day for HT, 16.05 mg/kg per day for HT-AC, and 2.42 mg/kg per day for ASA. Platelet synthesis of thromboxane B2 was inhibited by up to 30% by HT and 37% by HT-AC; the ID50 of this effect for ASA was 1.09 mg/kg per day. Vascular prostacyclin production was inhibited by up to 27.5% by HT and 32% by HT-AC; the ID50 of this effect for ASA was 6.75 mg/kg per day. Vascular nitric oxide production was increased by up to 34.2% by HT, 66% by HT-AC, and 64% by ASA. We conclude that HT and HT-AC administered orally inhibited platelet aggregation in rats and that a decrease in thromboxane synthesis along with an increase in nitric oxide production contributed to this effect.

    Topics: Acetates; Animals; Aspirin; Blood Platelets; Catechols; Collagen; Eicosanoids; Male; Nitric Oxide; Phenylethyl Alcohol; Platelet Aggregation; Platelet Aggregation Inhibitors; Rats; Rats, Wistar

2008
Neuroprotective effect of hydroxytyrosol and hydroxytyrosol acetate in rat brain slices subjected to hypoxia-reoxygenation.
    Neuroscience letters, 2008, Dec-03, Volume: 446, Issue:2-3

    Hydroxytyrosol (HT) and hydroxytyrosol acetate (HT-AC) are two well-known phenolic compounds with antioxidant properties that are present in virgin olive oil (VOO). Because VOO has shown neuroprotective effects in rats, the purpose of the present study was to investigate the possible neuroprotective effect of HT and HT-AC in a model of hypoxia-reoxygenation in rat brain slices after in vitro incubation of these compounds or after 7 days of oral treatment with 5 or 10 mg/kg per day. Lactate dehydrogenase (LDH) efflux to the incubation medium was measured as a marker of brain cell death. HT and HT-AC inhibited LDH efflux in a concentration-dependent manner, with 50% inhibitory concentrations of 77.78 and 28.18 microM, respectively. Other well-known antioxidants such as vitamin E and N-acetyl-cysteine had no neuroprotective effect in this experimental model. After 1 week of treatment, HT (5 and 10 mg/kg per day p.o.) reduced LDH efflux by 37.8% and 52.7%, respectively, and HT-AC reduced LDH efflux by 45.4% and 67.8%. These data are additional evidence of the cytoprotective effect of VOO administration, and provide a preliminary basis for further study of these polyphenols as potential neuroprotective compounds.

    Topics: Acetates; Animals; Antioxidants; Brain; Catechols; Diet, Mediterranean; Dose-Response Relationship, Drug; Energy Metabolism; Hypoxia-Ischemia, Brain; L-Lactate Dehydrogenase; Male; Nerve Degeneration; Neuroprotective Agents; Olive Oil; Organ Culture Techniques; Oxidative Stress; Phenylethyl Alcohol; Plant Oils; Rats; Rats, Wistar; Reperfusion Injury

2008
High-yielding synthesis of methyl orthoformate-protected hydroxytyrosol and its use in preparation of hydroxytyrosyl acetate.
    Molecules (Basel, Switzerland), 2007, Aug-08, Volume: 12, Issue:8

    The new methyl orthoformate of the powerful antioxidant hydroxytyrosol (or 2-(3,4-dihydroxyphenyl)ethanol) has been synthesized by a two-step high yielding procedure. The protection stabilizes hydroxytyrosol against fast oxidation and allows both easy chromatographic purification and long term storage. The protective group is hydrolyzed over pH = 10 and below pH = 5, thus allowing the release of the active principle under physiological conditions. The use of the methyl orthoformate-protected hydroxytyrosol allows the preparation of protected hydroxytyrosyl esters, like the acetate herein reported, by selective esterification of the alcoholic function. The subsequent quantitative deprotection under non-aqueous and mild conditions affords the hydroxytyrosyl acetate in high yields.

    Topics: Acetates; Benzodioxoles; Catechols; Phenylethyl Alcohol

2007