hydroxymatairesinol has been researched along with pinoresinol* in 2 studies
2 other study(ies) available for hydroxymatairesinol and pinoresinol
Article | Year |
---|---|
Lignans 7-hydroxymatairesinol and 7-hydroxymatairesinol 2 exhibit anti-inflammatory activity in human aortic endothelial cells.
In the present study, we evaluated the anti-inflammatory properties of several plant lignans most commonly distributed in foods. 7-Hydroxymatairesinol (HMR) and its major isomer 7-hydroxymatairesinol 2 (HMR2), lariciresinol, secoisolariciresinol, and pinoresinol, isolated from Norway spruce knots were examined.. We investigated the anti-inflammatory effects of lignans on tumor necrosis factor-α-treated human aortic endothelial cells by measuring the expression of intracellular adhesion molecule-1 and vascular cell adhesion molecule-1 by cell ELISA and the adhesion of U937 monocytes to activated endothelial cells using a cell adhesion assay. Among the lignans studied, HMR and HMR2 significantly reduced intracellular adhesion molecule-1 and vascular cell adhesion molecule-1 levels as well as the adhesion of U937 to endothelial cells. To further characterize the molecular mechanisms involved in this regulation, the effect of HMR and HMR2 on nuclear factor-κB, SAPK/c-Jun NH2-terminal kinase and extracellular signal regulated kinase phosphorylation was assessed.. Our results demonstrated that the lignans HMR and HMR2, dominant in cereals such as in wheat, triticale, oat, barley, millet, corn bran, and in amaranth whole grain, exhibit strong anti-inflammatory properties in endothelial cells, at least in part, through attenuation of nuclear factor-κB and extracellular signal regulated kinase phosphorylation. Topics: Anti-Inflammatory Agents, Non-Steroidal; Aorta; Butylene Glycols; Cell Adhesion; Cells, Cultured; Endothelial Cells; Furans; Humans; Intercellular Adhesion Molecule-1; Lignans; MAP Kinase Kinase 4; Monocytes; NF-kappa B; Picea; PPAR gamma; Receptors, Estrogen; Vascular Cell Adhesion Molecule-1 | 2014 |
Among plant lignans, pinoresinol has the strongest antiinflammatory properties in human intestinal Caco-2 cells.
Dietary lignans show some promising health benefits, but little is known about their fate and activities in the small intestine. The purpose of this study was thus to investigate whether plant lignans are taken up by intestinal cells and modulate the intestinal inflammatory response using the Caco-2 cell model. Six lignan standards [secoisolariciresinol diglucoside (SDG), secoisolariciresinol (SECO), pinoresinol (PINO), lariciresinol, matairesinol (MAT), and hydroxymatairesinol] and their colonic metabolites [enterolactone (ENL) and enterodiol] were studied. First, differentiated cells were exposed to SDG, SECO, PINO, or ENL at increasing concentrations for 4 h, and their cellular contents (before and after deconjugation) were determined by HPLC. Second, in IL-1β-stimulated confluent and/or differentiated cells, lignan effects were tested on different soluble proinflammatory mediators quantified by enzyme immunoassays and on the NF-κB activation pathway by using cells transiently transfected. SECO, PINO, and ENL, but not SDG, were taken up and partly conjugated by cells, which is a saturable conjugation process. PINO was the most efficiently conjugated (75% of total in cells). In inflamed cells, PINO significantly reduced IL-6 by 65% and 30% in confluent and differentiated cells, respectively, and cyclooxygenase (COX)-2-derived prostaglandin E(2) by 62% in confluent cells. In contrast, MAT increased significantly COX-2-derived prostaglandin E(2) in confluent cells. Moreover, PINO dose-dependently decreased IL-6 and macrophage chemoattractant protein-1 secretions and NF-κB activity. Our findings suggest that plant lignans can be absorbed and metabolized in the small intestine and, among the plant lignans tested, PINO exhibited the strongest antiinflammatory properties by acting on the NF-κB signaling pathway, possibly in relation to its furofuran structure and/or its intestinal metabolism. Topics: 4-Butyrolactone; Anti-Inflammatory Agents; Butylene Glycols; Caco-2 Cells; Cell Differentiation; Chemokine CCL2; Chromatography, High Pressure Liquid; Cyclooxygenase 2; Furans; Glucosides; Humans; Interleukin-1beta; Interleukin-6; Interleukin-8; Intestines; Lignans; NF-kappa B; Plant Extracts; Signal Transduction | 2012 |