hydroxylysine and histidinohydroxylysinonorleucine

hydroxylysine has been researched along with histidinohydroxylysinonorleucine* in 2 studies

Other Studies

2 other study(ies) available for hydroxylysine and histidinohydroxylysinonorleucine

ArticleYear
Analyses of lysine aldehyde cross-linking in collagen reveal that the mature cross-link histidinohydroxylysinonorleucine is an artifact.
    The Journal of biological chemistry, 2019, 04-19, Volume: 294, Issue:16

    Lysyl oxidase-generated intermolecular cross-links are essential for the tensile strength of collagen fibrils. Two cross-linking pathways can be defined, one based on telopeptide lysine aldehydes and another on telopeptide hydroxylysine aldehydes. Since the 1970s it has been accepted that the mature cross-linking structures on the lysine aldehyde pathway, which dominates in skin and cornea, incorporate histidine residues. Here, using a range of MS-based methods, we re-examined this conclusion and found that telopeptide aldol dimerization is the primary mechanism for stable cross-link formation. The C-telopeptide aldol dimers formed labile addition products with glucosylgalactosyl hydroxylysine at α1(I)K87 in adjacent collagen molecules that resisted borohydride reduction and after acid hydrolysis produced histidinohydroxylysinonorleucine (HHL), but only from species with a histidine in their α1(I) C-telopeptide sequence. Peptide MS analyses and the lack of HHL formation in rat and mouse skin, species that lack an α1(I) C-telopeptide histidine, revealed that HHL is a laboratory artifact rather than a natural cross-linking structure. Our experimental results also establish that histidinohydroxymerodesmosine is produced by borohydride reduction of N-telopeptide allysine aldol dimers in aldimine intermolecular linkage to nonglycosylated α1(I) K930. Borohydride reduction of the aldimine promotes an accompanying base-catalyzed Michael addition of α1(I) H932 imidazole to the α,β-unsaturated aldol. These aldehydes are intramolecular at the N terminus but at the C terminus they can be both intramolecular and intermolecular according to present and earlier findings.

    Topics: Aldehydes; Animals; Artifacts; Cattle; Collagen Type I; Dipeptides; Histidine; Hydroxylysine; Peptides; Protein-Lysine 6-Oxidase; Skin

2019
Altered posttranslational modifications of collagen in keloid.
    Biochemical and biophysical research communications, 1998, Aug-28, Volume: 249, Issue:3

    Keloid is a tissue with an excessive accumulation of collagen. In this study, we have partially characterized post-translational modifications of type I collagen in human keloid in order to pursue their potential involvement in this pathology. The levels of lysyl hydroxylation of the helical portions of alpha 1 and alpha 2 chains of type I collagen in keloid were significantly higher than those of normal, while the levels of prolyl hydroxylation were identical between these two groups. The contents of the major reducible cross-links in dermal collagen, dehydro-hydroxylysinonorleucine and dehydro-histidinohydroxymero-desmosine, were both significantly higher in keloids (up to sixfold) than those of normal. In addition, significant amounts of hydroxylysine-aldehyde derived cross-links that are characteristic of skeletal tissue collagens, dehydro-dihydroxylysinonorleucine (about 0.3 mole/mole of collagen) and pyridinoline (about 0.1 mole/mole of collagen), were found in keloids. These results indicate that keloid-forming cells are phenotypically different from those in normal dermis and that the collagen produced is highly cross-linked. The increased cross-linking provides the fibrils with more stability that may result in an accumulation of collagen.

    Topics: Adult; Amino Acids; Collagen; Cross-Linking Reagents; Desmosine; Dipeptides; Histidine; Humans; Hydroxylation; Hydroxylysine; Hydroxyproline; Keloid; Middle Aged; Protein Processing, Post-Translational; Protein Structure, Secondary; Skin

1998