hydroxylamine has been researched along with diacetyl in 5 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 5 (100.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Berrocal, F; Carreras, J | 2 |
Holohan, PD; Ross, CR; Sokol, PP | 1 |
Broquet, P; Louisot, P; Serres-Guillaumond, M | 1 |
Bieth, JG; Davril, M; Duportail, G; Han, KK; Jung, ML; Lohez, M | 1 |
5 other study(ies) available for hydroxylamine and diacetyl
Article | Year |
---|---|
Metabolism of glycerate 2,3-P2--XI. Essential amino acids of pig phosphoglycerate mutase isozymes.
Topics: Animals; Diacetyl; Diethyl Pyrocarbonate; Hydroxylamine; Hydroxylamines; Isoenzymes; Kinetics; Phosphoglycerate Mutase; Phosphoric Monoester Hydrolases; Phosphotransferases; Pyruvaldehyde; Swine | 1987 |
Arginyl and histidyl groups are essential for organic anion exchange in renal brush-border membrane vesicles.
Topics: Aldehydes; Animals; Arginine; Butanones; Diacetyl; Diethyl Pyrocarbonate; Dithiothreitol; Dogs; Formates; Histidine; Hydroxylamine; Hydroxylamines; Kidney Cortex; Kinetics; Microvilli; p-Aminohippuric Acid; Phenylglyoxal | 1988 |
Metabolism of glycerate-2,3-P2-III. Arginine-specific reagents inactivate the phosphoglycerate mutase, glycerate-2,3-P2 synthase and glycerate-2,3-P2 phosphatase activities of rabbit muscle phosphoglycerate mutase.
Topics: Animals; Arginine; Cyclohexanones; Diacetyl; Glyoxal; Hydroxylamine; Hydroxylamines; Muscles; Phenylglyoxal; Phosphoglycerate Mutase; Phosphoric Monoester Hydrolases; Phosphotransferases; Pyruvaldehyde; Rabbits | 1983 |
Involvement of some amino acid residues in the enzymatic activity of solubilized cerebral fucosyltransferase.
Topics: Animals; Arginine; Binding Sites; Brain; Butanones; Diacetyl; Diethyl Pyrocarbonate; Formates; Fucosyltransferases; Hexosyltransferases; Histidine; Hydroxylamine; Hydroxylamines; Kinetics; Methane; Sheep; Tetranitromethane; Tyrosine | 1984 |
Arginine modification in elastase. Effect on catalytic activity and conformation of the calcium-binding site.
Topics: Animals; Arginine; Calcium; Cyclohexanones; Diacetyl; Hydroxylamine; Hydroxylamines; Kinetics; Pancreas; Pancreatic Elastase; Phenylglyoxal; Protein Conformation; Swine | 1984 |