hydroxylamine has been researched along with 1,2-cyclohexanedione in 4 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 2 (50.00) | 18.7374 |
1990's | 2 (50.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Cummins, BJ; Dischinger, HC; Ullah, AH | 1 |
Berrocal, F; Carreras, J | 1 |
Bieth, JG; Davril, M; Duportail, G; Han, KK; Jung, ML; Lohez, M | 1 |
Antón, LC; Barrio, E; Gavilanes, F; Marqués, G; Ruiz, S; Sánchez, A; Vivanco, F | 1 |
4 other study(ies) available for hydroxylamine and 1,2-cyclohexanedione
Article | Year |
---|---|
Cyclohexanedione modification of arginine at the active site of Aspergillus ficuum phytase.
Topics: 6-Phytase; Amino Acids; Arginine; Aspergillus; Binding Sites; Chromatography, High Pressure Liquid; Cyclohexanones; Hydrogen-Ion Concentration; Hydroxylamine; Hydroxylamines; Kinetics; Molecular Sequence Data; Peptide Fragments; Peptide Mapping; Sequence Homology, Nucleic Acid; Substrate Specificity | 1991 |
Metabolism of glycerate-2,3-P2-III. Arginine-specific reagents inactivate the phosphoglycerate mutase, glycerate-2,3-P2 synthase and glycerate-2,3-P2 phosphatase activities of rabbit muscle phosphoglycerate mutase.
Topics: Animals; Arginine; Cyclohexanones; Diacetyl; Glyoxal; Hydroxylamine; Hydroxylamines; Muscles; Phenylglyoxal; Phosphoglycerate Mutase; Phosphoric Monoester Hydrolases; Phosphotransferases; Pyruvaldehyde; Rabbits | 1983 |
Arginine modification in elastase. Effect on catalytic activity and conformation of the calcium-binding site.
Topics: Animals; Arginine; Calcium; Cyclohexanones; Diacetyl; Hydroxylamine; Hydroxylamines; Kinetics; Pancreas; Pancreatic Elastase; Phenylglyoxal; Protein Conformation; Swine | 1984 |
Arginine residues of the globular regions of human C1q involved in the interaction with immunoglobulin G.
Topics: Amino Acid Sequence; Animals; Antigen-Antibody Complex; Arginine; Binding Sites, Antibody; Chromatography, High Pressure Liquid; Complement C1q; Cyclohexanones; Diethyl Pyrocarbonate; Histidine; Humans; Hydroxylamine; Hydroxylamines; Immunoglobulin G; Kinetics; Macromolecular Substances; Molecular Sequence Data; Peptide Fragments; Phenylglyoxal; Protein Conformation; Rabbits | 1993 |