hydrogen sulfide has been researched along with nnc 55-0396 in 4 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 4 (100.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Fukushima, N; Kanaoka, D; Kawabata, A; Matsunami, M; Ohkubo, T; Okubo, K; Sekiguchi, F; Takahashi, T; Yamazaki, J; Yoshida, S | 1 |
Hayashi, Y; Kawabata, A; Kubo, L; Matsunami, M; Miki, T; Nishikawa, H; Nishiura, K; Okawa, Y; Ozaki, T; Sekiguchi, F; Tsujiuchi, T | 1 |
Kawabata, A; Noguchi, Y; Okawa, Y; Sekiguchi, F; Tsubota-Matsunami, M | 1 |
Fujimura, M; Kawabata, A; Nishimura, S; Sekiguchi, F; Terada, Y; Tsubota, M | 1 |
4 other study(ies) available for hydrogen sulfide and nnc 55-0396
Article | Year |
---|---|
Inhibition of T-type calcium channels and hydrogen sulfide-forming enzyme reverses paclitaxel-evoked neuropathic hyperalgesia in rats.
Topics: Animals; Antineoplastic Agents; Benzimidazoles; Blotting, Western; Calcium Channels, T-Type; Cyclopropanes; Enzyme Inhibitors; HEK293 Cells; Humans; Hydrogen Sulfide; Hyperalgesia; Male; Naphthalenes; Neuralgia; Paclitaxel; Patch-Clamp Techniques; Rats; Rats, Wistar | 2011 |
Involvement of the endogenous hydrogen sulfide/Ca(v) 3.2 T-type Ca2+ channel pathway in cystitis-related bladder pain in mice.
Topics: Acetanilides; Animals; Benzimidazoles; Calcium Channel Blockers; Calcium Channels, T-Type; Cyclophosphamide; Cyclopropanes; Cystathionine gamma-Lyase; Cystitis; Disease Models, Animal; Female; Ganglia, Spinal; Hydrogen Sulfide; Mibefradil; Mice; Naphthalenes; Organ Size; Pain; Purines; Transient Receptor Potential Channels; TRPA1 Cation Channel; Urinary Bladder; Verapamil | 2012 |
Colonic hydrogen sulfide-induced visceral pain and referred hyperalgesia involve activation of both Ca(v)3.2 and TRPA1 channels in mice.
Topics: Animals; Benzimidazoles; Calcium Channels, T-Type; Cyclopropanes; Female; Hydrogen Sulfide; Hyperalgesia; Mice; Naphthalenes; Nociceptors; Sulfides; Transient Receptor Potential Channels; TRPA1 Cation Channel; Visceral Pain | 2012 |
Roles of Cav3.2 and TRPA1 channels targeted by hydrogen sulfide in pancreatic nociceptive processing in mice with or without acute pancreatitis.
Topics: Analysis of Variance; Animals; Benzimidazoles; Calcium Channel Blockers; Calcium Channels, T-Type; Ceruletide; Cyclopropanes; Disease Models, Animal; Hydrogen Sulfide; Hyperalgesia; Isothiocyanates; Male; Mice; Naphthalenes; Oligodeoxyribonucleotides, Antisense; Pancreatitis; Posterior Horn Cells; Proto-Oncogene Proteins c-fos; Transient Receptor Potential Channels; TRPA1 Cation Channel; Visceral Pain | 2015 |