humulene and geraniol

humulene has been researched along with geraniol* in 4 studies

Other Studies

4 other study(ies) available for humulene and geraniol

ArticleYear
[Optimized chromatographic methods for the identification and quantification of terpenes in Cannabis sativa oil for medicinal use]
    Revista de la Facultad de Ciencias Medicas (Cordoba, Argentina), 2023, 06-30, Volume: 80, Issue:2

    Cannabis sativa is a plant species with numerous active principles, so the list of its therapeutic uses is expanding. In this sense, there are numerous evidences of the possible medicinal use of terpenes, as well as their synergism with cannabinoids (entourage effect). Thus, as more countries contemplate the legalization and authorization of medical cannabis, the number of cannabis extraction and analysis laboratories is increasing to meet the demand, requiring adequate analytical tools.. In response to numerous inquiries from physicians, analytical laboratories and users, the PROBIEN chromatography laboratory has selected two methods for the analysis of terpenes in Cannabis oil by gas chromatography technique (GC-FID). The methods are described using HP-5 and Innowax columns. The external standard method was used for the quantitative determination of β-Pinene, Myrcene, p-Cymene, Limonene, Linalool, α-Terpineol, Nerol and Geraniol.. good peak separation and reproducibility were observed, appropriate for the identification and quantification of the main terpenes in Cannabis extracts. The area/concentration ratio was linear in the range of 0.0005 to 2.0 mg/ml.. The described methods allow the identification and quantification of the major terpenes in Cannabis oil for an adequate quality control.. Cannabis sativa es una especie vegetal con gran número de principios activos, por lo que la lista de sus usos terapéuticos se está ampliando. En este sentido, hay numerosas evidencias del posible uso medicinal de los terpenos, así como del sinergismo de ellos con los cannabinoides (efecto séquito). Así, a medida que más países contemplan la legalización y autorización del cannabis medicinal, el número de laboratorios de extracción y análisis de cannabis aumenta para satisfacer la demanda, requiriéndose herramientas analíticas adecuadas.. En respuesta a numerosas consultas de médicos, laboratorios de análisis y usuarios, el laboratorio de cromatografía del PROBIEN ha seleccionado dos métodos para el análisis de terpenos en aceite de Cannabis por la técnica de cromatografía gaseosa (GC-FID). Se describen los métodos usando las columnas HP-5 e Innowax. Se empleó el método del estándar externo para la determinación cuantitativa de β-Pineno, Myrceno, p-Cymeno, Limoneno, Linalool, α-Terpineol, Nerol y Geraniol.. se observó una buena separación de picos y reproducibilidad, apropiadas para la identificación y cuantificación de los principales terpenos en extractos de Cannabis. La relación área/concentración fue lineal en el rango de 0,0005 a 2,0 mg/ml.. los métodos descritos permiten la identificación y cuantificación de los terpenos mayoritarios en aceite de Cannabis para un control de calidad adecuado.

    Topics: Cannabinoids; Cannabis; Gas Chromatography-Mass Spectrometry; Humans; Reproducibility of Results; Terpenes

2023
Model to design insecticides against Aedes aegypti using in silico and in vivo analysis of different pharmacological targets.
    Comparative biochemistry and physiology. Toxicology & pharmacology : CBP, 2020, Volume: 229

    Compounds having insecticidal activity can be used to control Aedes aegypti mosquitoes, a major worldwide vector, and several plants have a source of such molecules. A principal component analysis (PCA) was carried out to determine the criterion to select larvicidal metabolites. The insecticidal activity of seven selected metabolites by PCA was validated by determining its lethal concentrations 50 (LC

    Topics: Acetates; Acyclic Monoterpenes; Aedes; Animals; Insecticides; Mitochondria; Monocyclic Sesquiterpenes; Mosquito Control; Oxidation-Reduction; Polycyclic Sesquiterpenes; Secondary Metabolism

2020
Characterization of the Migration of Hop Volatiles into Different Crown Cork Liner Polymers and Can Coatings.
    Journal of agricultural and food chemistry, 2016, Apr-06, Volume: 64, Issue:13

    Absorption of hop volatiles by crown cork liner polymers and can coatings was investigated in beer during storage. All hop volatiles measured were prone to migrate into the closures, and the absorption kinetics was demonstrated to fit Fick's second law of diffusion well for a plane sheet. The extent and rate of diffusion were significantly dissimilar and were greatly dependent upon the nature of the volatile. Diffusion coefficients ranged from 1.32 × 10(-5) cm(2)/day (limonene) to 0.26 × 10(-5) cm(2)/day (α-humulene). The maximum amounts absorbed into the material at equilibrium were in the following order: limonene > α-humulene > trans-caryophyllene > myrcene ≫ linalool > α-terpineol > geraniol. With the application of low-density polyethylene (LDPE) liners with oxygen-scavenging functionality, oxygen-barrier liners made up from high-density polyethylene (HDPE) or liner polymers from a different manufacturer had no significant effect on the composition of hop volatiles in beers after prolonged storage of 55 days; however, significantly higher amounts of myrcene and limonene were found in the oxygen-barrier-type crown cork, while all other closures behaved similarly. Can coatings were demonstrated to absorb hop volatiles in a similar pattern as crown corks but to a lesser extent. Consequently, significantly higher percentages of myrcene were found in the beers.

    Topics: Acyclic Monoterpenes; Alkenes; Beer; Cyclohexane Monoterpenes; Cyclohexenes; Gas Chromatography-Mass Spectrometry; Humulus; Limonene; Monocyclic Sesquiterpenes; Monoterpenes; Polycyclic Sesquiterpenes; Polyethylene; Polymers; Sesquiterpenes; Terpenes

2016
Volatile Compounds with Characteristic Odor of Essential Oil from Magnolia obovata Leaves by Hydrodistillation and Solvent-assisted Flavor Evaporation.
    Journal of oleo science, 2015, Volume: 64, Issue:9

    The present study focuses on the volatile compounds with characteristic odor of essential oil from the leaves of Magnolia obovata by hydrodistillation (HD) and solvent-assisted flavor evaporation (SAFE) method. Eighty-seven compounds, representing 98.0% of the total oil, were identified using HD. The major compounds of HD oil were (E)-β-caryophyllene (23.7%), α-humulene (11.6%), geraniol (9.1%), and borneol (7.0%). In SAFE oil, fifty-eight compounds, representing 99.7% of the total oil, were identified. The main compounds of SAFE oil were (E)-β-caryophyllene (48.9%), α-humulene (15.7%), and bicyclogermacrene (4.2%). In this study, we newly identified eighty-five compounds of the oils from M. obovata leaves. These oils were also subjected to aroma evaluation by gas chromatography-olfactometry (GC-O) and aroma extract dilution analysis (AEDA). As a result, twenty-four (HD) and twenty-five (SAFE) aroma-active compounds were detected. (E)-β-Caryophyllene, α-humulene, linalool, geraniol, 1,8-cineole, and bicyclogermacrene were found to impart the characteristic odor of M. obovata leaves. These results imply that the oils of M. obovata leaves must be investigated further to clarify their potential application in the food and pharmaceutical industries.

    Topics: Acyclic Monoterpenes; Camphanes; Chromatography, Gas; Cyclohexanols; Distillation; Eucalyptol; Magnolia; Monocyclic Sesquiterpenes; Monoterpenes; Odorants; Oils, Volatile; Olfactometry; Plant Leaves; Polycyclic Sesquiterpenes; Sesquiterpenes; Solvents; Terpenes; Volatilization; Water

2015