ht-2-toxin and deoxynivalenol-3-glucoside

ht-2-toxin has been researched along with deoxynivalenol-3-glucoside* in 3 studies

Other Studies

3 other study(ies) available for ht-2-toxin and deoxynivalenol-3-glucoside

ArticleYear
Development and validation of a liquid chromatography tandem mass spectrometry multi-method for the determination of 41 free and modified mycotoxins in beer.
    Food chemistry, 2021, Feb-15, Volume: 338

    Topics: Beer; Chromatography, High Pressure Liquid; Dietary Exposure; Food Analysis; Food Contamination; Glucosides; Humans; Limit of Detection; Mycotoxins; Reproducibility of Results; T-2 Toxin; Tandem Mass Spectrometry; Tenuazonic Acid; Trichothecenes

2021
Fungal community, Fusarium head blight complex and secondary metabolites associated with malting barley grains harvested in Umbria, central Italy.
    International journal of food microbiology, 2018, May-20, Volume: 273

    In recent years, due to the negative impact of toxigenic mycobiota and of the accumulation of their secondary metabolites in malting barley grains, monitoring the evolution of fungal communities in a certain cultivation area as well as detecting the different mycotoxins present in the raw material prior to malting and brewing processes have become increasingly important. In this study, a survey was carried out on malting barley samples collected after their harvest in the Umbria region (central Italy). Samples were analyzed to determine the composition of the fungal community, to identify the isolated Fusarium species, to quantify fungal secondary metabolites in the grains and to characterize the in vitro mycotoxigenic profile of a subset of the isolated Fusarium strains. The fungal community of barley grains was mainly composed of microorganisms belonging to the genus Alternaria (77%), followed by those belonging to the genus Fusarium (27%). The Fusarium head blight (FHB) complex was represented by nine species with the predominance of Fusarium poae (37%), followed by Fusarium avenaceum (23%), Fusarium graminearum (22%) and Fusarium tricinctum (7%). Secondary metabolites biosynthesized by Alternaria and Fusarium species were present in the analyzed grains. Among those biosynthesized by Fusarium species, nivalenol and enniatins were the most prevalent ones. Type A trichothecenes (T-2 and HT-2 toxins) as well as beauvericin were also present with a high incidence. Conversely, the number of samples contaminated with deoxynivalenol was low. Conjugated forms, such as deoxynivalenol-3-glucoside and HT-2-glucoside, were detected for the first time in malting barley grains cultivated in the surveyed area. In addition, strains of F. avenaceum and F. tricinctum showed the ability to biosynthesize in vitro high concentrations of enniatins. The analysis of fungal secondary metabolites, both in the grains and in vitro, revealed also the presence of other compounds, for which further investigations will be required. The combination of microbiological analyses, of molecular biology assays and of multi-mycotoxin screening shed light on the complexity of the fungal community and its secondary metabolites released in malting barley.

    Topics: Alternaria; Depsipeptides; Edible Grain; Food Contamination; Fusarium; Glucosides; Hordeum; Italy; Mycotoxins; Seedlings; T-2 Toxin; Trichothecenes

2018
The lager yeast Saccharomyces pastorianus removes and transforms Fusarium trichothecene mycotoxins during fermentation of brewer's wort.
    Food chemistry, 2016, Jul-15, Volume: 203

    An investigation was conducted to determine the fate of deoxynivalenol, deoxynivalenol-3-glucoside, HT-2 toxin and T-2 toxin, during a four-day fermentation with the lager yeast Saccharomyces pastorianus. The influence of excessive mycotoxin concentrations on yeast growth, productivity and viability were also assessed. Mycotoxins were dosed at varying concentrations to 11.5° Plato wort. Analysis of yeast revealed that presence of the toxins even at concentrations up to 10,000 μg/L had little or no effect on sugar utilisation, alcohol production, pH, yeast growth or cell viability. Of the dosed toxin amounts 9-34% were removed by the end of fermentation, due to physical binding and/or biotransformation by yeast. Deoxynivalenol-3-glucoside was not reverted to its toxic precursor during fermentation. Processing of full-scan liquid chromatography-quadrupole time-of-flight-mass spectrometry (LC-QTOF-MS) data with MetaboLynx and subsequent LC-QTOF-MS/MS measurements resulted in annotation of several putative metabolites. De(acetylation), glucosylation and sulfonation were the main metabolic pathways activated.

    Topics: Beer; Biotransformation; Chromatography, Liquid; Fermentation; Fusarium; Glucosides; Saccharomyces; T-2 Toxin; Tandem Mass Spectrometry; Trichothecenes

2016