ht-2-toxin has been researched along with acetyldeoxynivalenol* in 2 studies
2 other study(ies) available for ht-2-toxin and acetyldeoxynivalenol
Article | Year |
---|---|
Development of a multicomponent method for Fusarium toxins using LC-MS/MS and its application during a survey for the content of T-2 toxin and deoxynivalenol in various feed and food samples.
A reliable, sensitive and selective method was developed to determine different Fusarium mycotoxins (trichothecenes Type A and B, zearalenone) simultaneously in cereals and cereal-based samples using liquid chromatography with tandem mass spectrometry (LC-ESI-MS/MS). Sample preparation is based on a standard solvent extraction step followed by two different kinds of solid-phase clean-up procedures: using a multifunctional MycoSep material for trichothecenes and zearalenone. The average recoveries for trichothecenes ranged from 65% for nivalenol (NIV) up to 96% for deoxynivalenol (DON) and 89% for zearalenone (ZON). The limit of quantification varied between 0.02 and 10 ppb for each substance. In addition, a screening survey with 685 samples was carried out to compare contents of T-2 toxin and deoxynivalenol and to investigate potential coherence in contamination pattern. Topics: Chromatography, Liquid; Edible Grain; Flour; Food, Fortified; Fusarium; Mass Spectrometry; T-2 Toxin; Trichothecenes; Triticum; Zearalenone | 2005 |
A survey of Fusarium toxins in cereal-based foods marketed in an area of southwest Germany.
A total of 237 commercially available samples of cereal-based foods including bread and related products, noodles, breakfast cereals, baby and infant foods, rice and other foods were randomly collected in southwest Germany during the first six months of 1998. The trichothecenes deoxynivalenol (DON), 3- and 15-acetyl-deoxynivalenol (3-,15-ADON), nivalenol (NIV), fusarenon-X (FUS-X), T-2 toxin (T-2) and HT-2 toxin (HT-2) were determined by gas chromatography/mass spectrometry following clean-up by a two stage solid-phase extraction. Detection limits ranged between 2 and 12 micrograms/kg. Based on all samples, the incidence of DON, HT-2, T-2, 3-ADON, 15-ADON, and NIV was at 71, 18, 4, 4, 4 and 2%, respectively; the average contents in positive samples were at 103, 16, 14, 17, 24 and 109 micrograms/kg, respectively. Fus-X was not detected in any sample. A lower (P < 0.05) DON content was found in baby and infant foods as well as in cookies and cakes compared to bread. Overall, based on the incidence and level of all six toxins, the degree of contamination was lowest in baby and infant foods. Foods produced from either white or whole grain flour did not differ (P > 0.05) with regard to the incidence and level of DON. In foods produced from cereals of organic production both the incidence and median content of DON was lower compared to conventional production. Zearalenone, alpha- and beta-zearalenol were determined by high performance liquid chromatography in 20 selected samples, mostly baby and infant foods. These toxins were not present in excess of the detection limit in any sample. Topics: Bread; Chromatography, Affinity; Chromatography, High Pressure Liquid; Edible Grain; Food Microbiology; Fusarium; Gas Chromatography-Mass Spectrometry; Germany; Humans; Infant Food; Mycoses; Mycotoxins; Oryza; Secale; Spectrometry, Fluorescence; T-2 Toxin; Trichothecenes; Triticum; Zea mays; Zearalenone; Zeranol | 1999 |