homoeriodictyol has been researched along with chrysin in 5 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 2 (40.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Baird, WM; Cassady, JM; Cook, VM; Ho, DK; Liu, YL | 1 |
Augereau, JM; Billon, M; Gleye, J; Herbert, JM; Lale, A; Leconte, M | 1 |
Itoh, T; Sakakibara, H; Shimoi, K; Takemura, H; Yamamoto, K | 1 |
Batista-Gonzalez, A; Brunhofer, G; Fallarero, A; Gopi Mohan, C; Karlsson, D; Shinde, P; Vuorela, P | 1 |
Dutour, R; Poirier, D | 1 |
1 review(s) available for homoeriodictyol and chrysin
Article | Year |
---|---|
Inhibitors of cytochrome P450 (CYP) 1B1.
Topics: Cytochrome P-450 CYP1B1; Cytochrome P-450 Enzyme Inhibitors; Dose-Response Relationship, Drug; Humans; Molecular Structure; Structure-Activity Relationship | 2017 |
4 other study(ies) available for homoeriodictyol and chrysin
Article | Year |
---|---|
Isolation of potential cancer chemopreventive agents from Eriodictyon californicum.
Topics: Animals; Anticarcinogenic Agents; Benzo(a)pyrene; Cells, Cultured; Cricetinae; Depression, Chemical; DNA, Neoplasm; Female; Flavonoids; Plants, Medicinal; Pregnancy | 1992 |
Ability of different flavonoids to inhibit the procoagulant activity of adherent human monocytes.
Topics: Amino Acid Sequence; Blood Coagulation; Cell Adhesion; Endotoxins; Flavonoids; Humans; In Vitro Techniques; Interleukin-1; Molecular Sequence Data; Monocytes | 1996 |
Selective inhibition of methoxyflavonoids on human CYP1B1 activity.
Topics: Aryl Hydrocarbon Hydroxylases; Cytochrome P-450 CYP1A1; Cytochrome P-450 CYP1A2; Cytochrome P-450 CYP1A2 Inhibitors; Cytochrome P-450 CYP1B1; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Flavonoids; Humans; Models, Molecular; Structure-Activity Relationship | 2010 |
Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
Topics: Acetylcholinesterase; Amyloid beta-Peptides; Benzophenanthridines; Binding Sites; Butyrylcholinesterase; Catalytic Domain; Cholinesterase Inhibitors; Humans; Isoquinolines; Kinetics; Molecular Docking Simulation; Structure-Activity Relationship | 2012 |