homocysteine has been researched along with angiotensin ii in 20 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 3 (15.00) | 18.2507 |
2000's | 8 (40.00) | 29.6817 |
2010's | 8 (40.00) | 24.3611 |
2020's | 1 (5.00) | 2.80 |
Authors | Studies |
---|---|
Becker, CH; Kindling, PH; Matthias, D; Riezler, R | 1 |
Mujumdar, VS; Smiley, LM; Tyagi, SC | 1 |
Hayden, MR; Mujumdar, VS; Tyagi, SC | 1 |
Blumberg, JB; Shi, SS; Suzuki, YJ | 1 |
Ando, K; Fujita, T; Kaname, S; Nagase, M; Nagase, T; Sawamura, T | 1 |
Friedman, AN | 1 |
Arosio, E; Bencini, C; Capone, ML; Degan, M; Del Vecchio, C; Gaino, S; Lechi, A; Mansueto, G; Menapace, L; Minuz, P; Morganti, A; Palatresi, S; Patrignani, P; Patrono, C; Santonastaso, CL; Seta, F; Tacconelli, S; Tommasoli, R | 1 |
Bonaventura, D; de Oliveira, AM; Eberlin, MN; Haddad, R; Höehr, NF; Tirapelli, CR | 1 |
Amiri, F; Endemann, D; Neves, MF; Pu, Q; Rozen, R; Schiffrin, EL; Virdis, A | 1 |
Garaliene, V | 1 |
Au, AL; Chan, MS; Chan, SW; Kwan, YW; Seto, SW | 1 |
Abe, S; Devarajan, S; Fujimi, K; Kawamura, A; Miura, S; Saku, K; Uehara, Y; Urata, H | 1 |
Lau, YT; Ma, YH; Yen, CH; Yu, HP | 1 |
Alreja, G; Guan, J; Joseph, J; Luptak, I; Metes-Kosik, N; Shi, J; Zhi, H | 1 |
Kundu, S; Metreveli, N; Pushpakumar, SB; Sen, U | 1 |
Cui, W; Liu, J; Sun, X; Xie, X; Zhang, D; Zhu, Y | 1 |
Bian, ZX; Chen, ZY; Huang, Y; Ping Leung, F; San Cheang, W; Tak Wong, W; Wai Lau, C; Yen Tam, Y; Yu Tian, X; Yuen Ngai, C; Zhang, Y | 1 |
Chang, NB; He, YZ; Jiang, J; Jiang, R; Li, T; Sun, XL; Xu, JY | 1 |
Fang, X; Fu, Y; Kong, W; Li, J; Li, T; Liu, Z; Ma, M; Sun, J; Wang, X; Wang, Y; Yin, H; Yu, B; Yu, F; Zhu, M | 1 |
Kato, CD; Kitibwa, A; Matovu, E; Namayanja, M; Niyonzima, N; Nsubuga, J; Othieno, E; Ssebugere, P; Tumwine, AA | 1 |
1 review(s) available for homocysteine and angiotensin ii
Article | Year |
---|---|
[The main determinants of endothelial dysfunction].
Topics: Adult; Angiotensin II; Angiotensin-Converting Enzyme Inhibitors; Antioxidants; Arteriosclerosis; Biological Availability; Diabetes Mellitus; Endothelium, Vascular; Free Radicals; Heart Failure; Homocysteine; Humans; Hypertension; Hypolipidemic Agents; Middle Aged; Models, Biological; Muscle, Smooth, Vascular; Nitric Oxide; Oxidative Stress; Potassium Channels; Reactive Oxygen Species; Renal Insufficiency; Risk Factors; Vasodilation | 2006 |
1 trial(s) available for homocysteine and angiotensin ii
Article | Year |
---|---|
Increased oxidative stress and platelet activation in patients with hypertension and renovascular disease.
Topics: Adolescent; Adult; Aged; Angioplasty; Angiotensin II; Antioxidants; Biomarkers; Blood Glucose; Cholesterol; Cross-Sectional Studies; Dinoprost; F2-Isoprostanes; Female; Homocysteine; Humans; Hypertension; Hypertension, Renovascular; Lipid Peroxidation; Male; Middle Aged; Oxidative Stress; Platelet Activation; Reference Values; Renal Artery Obstruction; Renin; Renin-Angiotensin System; Thromboxane B2; Triglycerides; Vitamins | 2002 |
18 other study(ies) available for homocysteine and angiotensin ii
Article | Year |
---|---|
Homocysteine induced arteriosclerosis-like alterations of the aorta in normotensive and hypertensive rats following application of high doses of methionine.
Topics: Angiotensin II; Animals; Aorta; Arteriosclerosis; Cholestanols; Cholesterol; Cholic Acid; Cholic Acids; Endothelium, Vascular; Homocysteine; Hypertension; Hypolipidemic Agents; Male; Methionine; Methylthiouracil; Microscopy, Electron; Mitochondria; Rats; Rats, Inbred SHR; Rats, Wistar; Tunica Intima; Vasoconstrictor Agents | 1996 |
Homocyst(e)ine impairs endocardial endothelial function.
Topics: Angiotensin II; Animals; Calcium Chloride; Dose-Response Relationship, Drug; Endothelins; Endothelium; Heart Ventricles; Homocysteine; In Vitro Techniques; Isometric Contraction; Male; Myocardial Contraction; NG-Nitroarginine Methyl Ester; Rats; Rats, Inbred WKY; Time Factors; Ventricular Function, Left; Ventricular Function, Right | 1999 |
Homocyst(e)ine induces calcium second messenger in vascular smooth muscle cells.
Topics: Angiotensin II; Animals; Aorta; Calcium; Cells, Cultured; Collagen; Felodipine; Fluorescent Dyes; Fura-2; Glutathione; Homocysteine; Homocystine; Kinetics; Muscle, Smooth, Vascular; Neomycin; NG-Nitroarginine Methyl Ester; Pravastatin; Rats; Second Messenger Systems; Staurosporine; Tetradecanoylphorbol Acetate; Thapsigargin | 2000 |
Modulation of angiotensin II signaling for GATA4 activation by homocysteine.
Topics: 3T3 Cells; Angiotensin II; Animals; DNA; DNA-Binding Proteins; Electrophoresis, Polyacrylamide Gel; GATA4 Transcription Factor; Homocysteine; Mice; NFATC Transcription Factors; Nuclear Proteins; Protein Binding; Reactive Oxygen Species; Reverse Transcriptase Polymerase Chain Reaction; Signal Transduction; Transcription Factors | 1999 |
Redox-sensitive regulation of lox-1 gene expression in vascular endothelium.
Topics: Angiotensin II; Animals; Cattle; Cells, Cultured; Endothelium, Vascular; Gene Expression Regulation; Homocysteine; Immunohistochemistry; Male; Oxidative Stress; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Receptors, LDL; Receptors, Oxidized LDL; Scavenger Receptors, Class E | 2001 |
Renovascular hypertension, endothelial function, and oxidative stress.
Topics: Angioplasty; Angiotensin II; Glomerular Filtration Rate; Homocysteine; Humans; Hypertension, Renovascular; Oxidative Stress; Renal Artery; Vasodilation | 2002 |
Chronic methionine load-induced hyperhomocysteinemia enhances rat carotid responsiveness for angiotensin II.
Topics: Angiotensin II; Animals; Carotid Arteries; Cyclooxygenase Inhibitors; Dose-Response Relationship, Drug; Homocysteine; In Vitro Techniques; Indomethacin; Male; Methionine; Muscle Contraction; Potassium Chloride; Rats; Rats, Wistar; Vasoconstrictor Agents | 2004 |
Small artery mechanics in hyperhomocysteinemic mice: effects of angiotensin II.
Topics: Angiotensin II; Animals; Blood Pressure; Collagen; Disease Models, Animal; Elastin; Female; Homocysteine; Hyperhomocysteinemia; Male; Mesenteric Arteries; Methylenetetrahydrofolate Reductase (NADPH2); Mice; Mice, Inbred BALB C; Mice, Knockout; Vasoconstrictor Agents | 2004 |
Modulation by homocysteine of the iberiotoxin-sensitive, Ca2+ -activated K+ channels of porcine coronary artery smooth muscle cells.
Topics: 1,2-Dihydroxybenzene-3,5-Disulfonic Acid Disodium Salt; Acetophenones; Angiotensin II; Animals; Benzimidazoles; Calcium; Coronary Vessels; Dose-Response Relationship, Drug; Enzyme Activation; Enzyme Inhibitors; Homocysteine; In Vitro Techniques; Ion Channel Gating; Membrane Potentials; Muscle, Smooth, Vascular; NAD; NADPH Oxidases; Patch-Clamp Techniques; Peptides; Potassium Channel Blockers; Potassium Channels, Calcium-Activated; Superoxides; Swine; Vasoconstrictor Agents | 2006 |
Homocysteine-induced oxidative stress upregulates chymase in mouse mastocytoma cells.
Topics: Angiotensin II; Animals; Cell Line, Tumor; Chymases; Homocysteine; Mastocytoma; Mice; Oxidative Stress; Reactive Oxygen Species; RNA, Messenger; Up-Regulation | 2010 |
Reduction of superior mesenteric hemodynamic responsiveness to [Sar1, Thr8]-angiotensin II and bradykinin, but not sodium nitroprusside, in the presence of homocysteine infusion.
Topics: Angiotensin II; Animals; Blood Pressure; Bradykinin; Endothelium, Vascular; Hemodynamics; Homocysteine; Hyperhomocysteinemia; Infusions, Intravenous; Male; Mesenteric Artery, Superior; Models, Animal; Nitroprusside; Rats; Rats, Sprague-Dawley; Regional Blood Flow; Vascular Resistance | 2010 |
Effects of direct Renin inhibition on myocardial fibrosis and cardiac fibroblast function.
Topics: Amides; Angiotensin II; Animals; Antihypertensive Agents; Cardiomyopathies; Collagen; Diet; Extracellular Matrix; Fibroblasts; Fibrosis; Fumarates; Homocysteine; Mice; Myocardium; Proto-Oncogene Proteins c-akt; Renin; Renin-Angiotensin System; Signal Transduction | 2013 |
Folic acid mitigates angiotensin-II-induced blood pressure and renal remodeling.
Topics: Angiotensin II; Animals; Arginine; Blood Pressure; Collagen; Drinking; Folic Acid; Gene Expression Regulation, Enzymologic; Homocysteine; Hyperhomocysteinemia; Hypertension; Kidney; Matrix Metalloproteinases; Mice; Mice, Inbred C57BL; Nitric Oxide; Nitric Oxide Synthase Type III; RNA, Messenger; Tissue Inhibitor of Metalloproteinases | 2013 |
Homocysteine accelerates senescence of endothelial cells via DNA hypomethylation of human telomerase reverse transcriptase.
Topics: Angiotensin II; Animals; Binding Sites; CCCTC-Binding Factor; Cells, Cultured; Cellular Senescence; Cyclin-Dependent Kinase Inhibitor p16; Cyclin-Dependent Kinase Inhibitor p21; Disease Models, Animal; DNA Methylation; Folic Acid; Gene Expression Regulation, Enzymologic; Homocysteine; Human Umbilical Vein Endothelial Cells; Humans; Hyperhomocysteinemia; Male; Mice, Inbred C57BL; Promoter Regions, Genetic; Repressor Proteins; RNA Interference; S-Adenosylmethionine; Sp1 Transcription Factor; Telomerase; Telomere; Telomere Shortening; Time Factors; Transfection; Tumor Suppressor Protein p53 | 2015 |
Black tea protects against hypertension-associated endothelial dysfunction through alleviation of endoplasmic reticulum stress.
Topics: Angiotensin II; Animals; Aorta; Biflavonoids; Blood Pressure; Camellia sinensis; Capillary Resistance; Catechin; Cells, Cultured; Endoplasmic Reticulum Stress; Endothelial Cells; Endothelium, Vascular; Homocysteine; Hyperhomocysteinemia; Hypertension; Male; Oxidative Stress; Plant Extracts; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Tea; Vasodilation | 2015 |
Endothelial Cells Inhibit the Angiotensin II Induced Phenotypic Modulation of Rat Vascular Adventitial Fibroblasts.
Topics: Actins; Adventitia; Angiotensin II; Animals; Aorta, Thoracic; Arginine; Cells, Cultured; Coculture Techniques; Collagen Type I; Cyclic GMP; Endothelial Cells; Fibroblasts; Homocysteine; NG-Nitroarginine Methyl Ester; Rats; Rats, Sprague-Dawley; Signal Transduction | 2017 |
Homocysteine directly interacts and activates the angiotensin II type I receptor to aggravate vascular injury.
Topics: Allosteric Regulation; Angiotensin I; Angiotensin II; Animals; Aortic Aneurysm, Abdominal; HEK293 Cells; Homocysteine; Humans; Male; Mice, Inbred C57BL; Molecular Dynamics Simulation; Mutagenesis, Site-Directed; Protein Conformation; Receptor, Angiotensin, Type 1; Vascular System Injuries | 2018 |
Immunological and biochemical biomarker alterations among SARS-COV-2 patients with varying disease phenotypes in Uganda.
Topics: Angiotensin II; Biomarkers; C-Reactive Protein; COVID-19; Ferritins; Homocysteine; Humans; Interleukin-10; Interleukin-6; Phenotype; Procalcitonin; SARS-CoV-2; Tumor Necrosis Factor-alpha; Uganda | 2023 |