hlo-7 and asoxime-chloride

hlo-7 has been researched along with asoxime-chloride* in 24 studies

Other Studies

24 other study(ies) available for hlo-7 and asoxime-chloride

ArticleYear
Probing the role of amino acids in oxime-mediated reactivation of nerve agent-inhibited human acetylcholinesterase.
    Toxicology in vitro : an international journal published in association with BIBRA, 2015, Volume: 29, Issue:2

    In this study, we employed site-directed mutagenesis to understand the role of amino acids in the gorge in oxime-induced reactivation of nerve agent-inhibited human (Hu) acetylcholinesterase (AChE). The organophosphorus (OP) nerve agents studied included GA (tabun), GB (sarin), GF (cyclosarin), VX, and VR. The kinetics of reactivation were examined using both the mono-pyridinium oxime 2-PAM and bis-pyridinium oximes MMB4, HI-6, and HLö-7. The second-order reactivation rate constants were used to compare reactivation of nerve agent-inhibited wild-type (WT) and mutant enzymes. Residues including Y72, Y124 and W286 were found to play important roles in reactivation by bis-pyridinium, but not by mono-pyridinium oximes. Residue Y124 also was found to play a key role in reactivation by HI-6 and HLö-7, while E202 was important for reactivation by all oximes. Residue substitutions of F295 by Leu and Y337 by Ala showed enhanced reactivation by bis-pyridinium oximes MMB4, HI-6, and HLö-7, possibly by providing more accessibility of the OP moiety associated at the active-site serine to the oxime. These results are similar to those observed previously with bovine AChE and demonstrate that there is significant similarity between human and bovine AChEs with regard to oxime reactivation.

    Topics: Acetylcholinesterase; Amino Acids; Animals; Cattle; Chemical Warfare Agents; CHO Cells; Cholinesterase Reactivators; Cricetulus; Humans; Organophosphorus Compounds; Oximes; Pralidoxime Compounds; Pyridinium Compounds

2015
First efficient uncharged reactivators for the dephosphylation of poisoned human acetylcholinesterase.
    Chemical communications (Cambridge, England), 2011, May-14, Volume: 47, Issue:18

    Nerve agents are highly toxic organophosphorus compounds with strong inhibition potency against acetylcholinesterase (AChE). Herein, we describe two first extremely promising uncharged reactivators for poisoned human AChE with a superior or similar in vitro ability to reactivate the enzyme as compared to that of HI-6, obidoxime, TMB-4 and HLö-7.

    Topics: Acetylcholinesterase; Cholinesterase Inhibitors; Erythrocytes; Humans; Molecular Structure; Obidoxime Chloride; Organophosphates; Organophosphorus Compounds; Oximes; Pyridines; Pyridinium Compounds; Soman

2011
Muscle force and acetylcholinesterase activity in mouse hemidiaphragms exposed to paraoxon and treated by oximes in vitro.
    Toxicology, 2010, Jun-04, Volume: 272, Issue:1-3

    The therapy of organophosphorus compound (OP) poisoning is still a challenge to clinical toxicologists. To alleviate peripheral respiratory failure oximes, e.g. obidoxime and pralidoxime, are used to reactivate inhibited acetylcholinesterase (AChE) with the intention to restore the disturbed neuromuscular function. In severe human OP poisoning the persistence of poison may counteract effective reactivation by oximes. Therefore, the study was designed to investigate the effect of the clinically used oximes obidoxime, pralidoxime and the experimental compounds HI 6 and HLö 7 in the presence of different paraoxon concentrations. The mouse phrenic nerve-diaphragm preparation was used as a functional model. After washout of paraoxon remarkably low concentrations of obidoxime or HLö 7 were sufficient for restoration of paraoxon-impaired muscle force. In the presence of paraoxon, obidoxime was the most effective oxime and therapeutically used concentrations (10-20microM) were able to restore muscle function even in the presence of 1microM paraoxon. HLö 7 was less effective, but superior to HI 6 and pralidoxime. Generally, a reactivation of AChE to about 30-40% of normal was sufficient for restoration of muscle force. Thus, the data presented strongly support the administration of appropriately dosed oximes, preferably obidoxime, in paraoxon-poisoned patients to restore paraoxon-impaired muscle force.

    Topics: Acetylcholinesterase; Animals; Diaphragm; Humans; Male; Mice; Mice, Inbred Strains; Obidoxime Chloride; Oximes; Paraoxon; Physical Phenomena; Pralidoxime Compounds; Pyridinium Compounds

2010
Reactivation of tabun-hAChE investigated by structurally analogous oximes and mutagenesis.
    Toxicology, 2009, Nov-30, Volume: 265, Issue:3

    The nerve agent tabun inhibits the essential enzyme acetylcholinesterase (AChE) by a rapid phosphoramidation of the catalytic serine residue. Oximes, such as K027 and HLö-7, can reactivate tabun-inhibited human AChE (tabun-hAChE) whereas the activity of their close structural analogue HI-6 is notably low. To investigate HI-6, K027 and HLö-7, residues lining the active-site gorge of hAChE were substituted and the effects on kinetic parameters for reactivation were determined. None of the mutants (Asp74Asn, Asp74Glu, Tyr124Phe, Tyr337Ala, Tyr337Phe, Phe338Val and Tyr341Ala) were able to facilitate HI-6-mediated reactivation of tabun-hAChE. In contrast, Tyr124Phe and Tyr337Phe induce a 2-2.5-fold enhancement of the bimolecular rate constant for K027 and HLö-7. The largest effects on the dissociation constant (3.5-fold increase) and rate constant (20-fold decrease) were observed for Tyr341Ala and Asp74Asn, respectively. These findings demonstrate the importance of residues located distant from the conjugate during the reactivation of tabun-hAChE.

    Topics: Acetylcholinesterase; Cholinesterase Inhibitors; Cholinesterase Reactivators; Cloning, Molecular; Humans; Molecular Structure; Mutagenesis, Site-Directed; Organophosphates; Oximes; Pyridinium Compounds; Recombinant Proteins; Sequence Analysis, DNA; Templates, Genetic

2009
In vitro potency of H oximes (HI-6, HLö-7), the oxime BI-6, and currently used oximes (pralidoxime, obidoxime, trimedoxime) to reactivate nerve agent-inhibited rat brain acetylcholinesterase.
    Journal of toxicology and environmental health. Part A, 2006, Volume: 69, Issue:15

    The efficacy of H oximes (HI-6, HLö-7), the oxime BI-6, and currently used oximes (pralidoxime, obidoxime, trimedoxime) to reactivate acetylcholinesterase inhibited by two nerve agents (tabun, VX agent) was tested in vitro. Both H oximes (HI-6, HLö-7) and the oxime BI-6 were found to be more efficacious reactivators of VX-inhibited acetylcholinesterase than pralidoxime and obidoxime. On the other hand, their potency to reactivate tabun-inhibited acetylcholinesterase was low and did not reach the reactivating efficacy of trimedoxime and obidoxime. Thus, none of these compounds can be considered to be a broad-spectrum reactivator of nerve agent-inhibited acetylcholinesterase in spite of high potency to reactivate acetylcholinesterase inhibited by some nerve agents. More than one oxime may be necessary for the antidotal treatment of nerve agent-exposed individuals.

    Topics: Acetylcholinesterase; Animals; Antidotes; Brain; Chemical Warfare Agents; Cholinesterase Inhibitors; Cholinesterase Reactivators; Male; Obidoxime Chloride; Organophosphates; Organothiophosphorus Compounds; Oximes; Pralidoxime Compounds; Pyridines; Pyridinium Compounds; Rats; Rats, Wistar; Trimedoxime

2006
Pre-junctional effects of oximes on [3H]-acetylcholine release in rat hippocampal slices during soman intoxication.
    European journal of pharmacology, 2005, Jun-15, Volume: 516, Issue:3

    In this study, the non-reactivating effects of oximes in the hippocampus of the rat are investigated. The potassium (51 mM) evoked release of [(3)H]-acetylcholine and the liberation of [(3)H]-choline were determined in hippocampal slices following in vitro exposure to soman and five oximes (toxogonin, HI-6, HLö-7, P2S and 2-PAM) in separate experiments by superfusion. In the absence of soman, toxogonin and HLö-7 in particular induced a concentration dependent significant increase in the evoked release of [(3)H]-acetylcholine. There was also a significant effect of HI-6, but the effect was much smaller. Two pralidoxime salts, P2S (methanesulfonate salt) and 2-PAM (methiodide salt), had similar but lower effects that were only observed at relatively high concentrations. Experiments performed following complete inhibition of the acetylcholinesterase activity by soman (1.0 microM) showed that HI-6 and HLö-7 induced a significant decrease in the potassium-evoked release of [(3)H]-acetylcholine, while the liberation of [(3)H]-choline increased. Toxogonin, P2S and 2-PAM did not reduce significantly the evoked release of [(3)H]-acetylcholine. Only limited reactivation of the acetylcholinesterase activity was observed in superfusion experiments with toxogonin, HI-6, P2S and 2-PAM following exposure of hippocampal slices to soman. However, HLö-7 was proved to be relatively more effective in reactivating the acetylcholinesterase activity at high concentrations (50 and 200 microM). The acetylcholinesterase activity was reactivated to approximately 12% and 40% of control, respectively. It is concluded that HI-6 and HLö-7 have important non-acetylcholinesterase reactivating properties following soman poisoning, as may be seen by the significant reduction in the evoked release of [(3)H]-acetylcholine effected by these oximes. HLö-7 is of particular interest in view of its ability to additionally improve reactivation of the acetylcholinesterase activity.

    Topics: Acetylcholine; Acetylcholinesterase; Animals; Cholinesterase Inhibitors; Cholinesterase Reactivators; Dose-Response Relationship, Drug; Hippocampus; In Vitro Techniques; Male; Neuromuscular Junction; Obidoxime Chloride; Oximes; Potassium; Pralidoxime Compounds; Pyridines; Pyridinium Compounds; Rats; Rats, Wistar; Soman; Tritium

2005
Reactivation and aging kinetics of human acetylcholinesterase inhibited by organophosphonylcholines.
    Archives of toxicology, 2004, Volume: 78, Issue:4

    A great number of structurally different organophosphorus compounds (OPs) was synthesized in the past decades to be used as pesticides or chemical warfare agents. Methyl-fluorophosphonylcholines were found to be highly toxic OPs and the acetylcholinesterase (AChE) reactivator pralidoxime was shown to be unable to reactivate inhibited AChE. In the course of the development of more effective AChE reactivators, we have determined the reactivation rate constants of various oximes with human AChE inhibited by methylfluorophosphonylcholine (MFPCh), methylfluoro-beta-phosphonylcholine (MFP beta Ch) and methylfluorophosphonylhomocholine (MFPhCh). In addition, we investigated the potential influence of aging phenomena on the oxime efficacy. Human AChE inhibited by MFPCh, MFP beta Ch or MFPhCh was extremely resistant towards reactivation by oximes. Nevertheless, the newer compounds, HLö 7 and HI 6, were substantially more potent reactivators than obidoxime and pralidoxime. The low oxime efficacy was not due to rapid aging since no decrease in reactivatability was found over 96 h at 37 degrees C. Within this period a substantial spontaneous reactivation was observed, with MFPCh >MFP beta Ch >MFPhCh, which did not follow pseudo-first-order kinetics. In conclusion, the unexpected results, i.e., high resistance of inhibited AChE towards oxime reactivation and aging, and much lower resistance towards spontaneous reactivation, calls for further experiments at a molecular level for a better understanding of the interactions among AChE, its inhibitors and reactivators.

    Topics: Acetylcholinesterase; Cholinesterase Inhibitors; Cholinesterase Reactivators; Erythrocyte Membrane; Humans; Obidoxime Chloride; Organophosphorus Compounds; Oximes; Phosphorylcholine; Pralidoxime Compounds; Pyridines; Pyridinium Compounds; Spectrophotometry; Time Factors

2004
Reactivation kinetics of acetylcholinesterase from different species inhibited by highly toxic organophosphates.
    Archives of toxicology, 2002, Volume: 76, Issue:9

    Standard treatment of poisoning by organophosphates (OP) includes the administration of an antimuscarinic agent, e.g. atropine, and of an acetylcholinesterase (AChE) reactivator (oxime). The presently available oximes, obidoxime and pralidoxime (2-PAM), are considered to be insufficient for highly toxic OPs, e.g. sarin. In the past decades numerous oximes were prepared and tested for their efficacy in OP poisoning, mostly in animal experiments. However, data indicate that the reactivating potency of oximes may be different in humans and animal species, which may hamper the extrapolation of animal data to humans and may pose a problem in the drug licensing of new compounds. In order to provide data for a better evaluation of the reactivating potency of oximes, experiments were undertaken to determine the reactivation rate constants of several oximes with human, rabbit, rat and guinea-pig AChE inhibited by the OPs sarin, cyclosarin and VX. The results show marked differences among the species, depending on the inhibitor and on the oxime, and indicate that the findings from animal experiments need careful evaluation before extrapolating these data to humans.

    Topics: Acetylcholinesterase; Algorithms; Animals; Chemical Warfare Agents; Cholinesterase Inhibitors; Cholinesterase Reactivators; Enzyme Activation; Erythrocyte Membrane; Guinea Pigs; Humans; Kinetics; Obidoxime Chloride; Organophosphorus Compounds; Organothiophosphorus Compounds; Oximes; Pralidoxime Compounds; Pyridines; Pyridinium Compounds; Rabbits; Rats; Sarin; Species Specificity

2002
Effect of human plasma on the reactivation of sarin-inhibited human erythrocyte acetylcholinesterase.
    Archives of toxicology, 2000, Volume: 74, Issue:1

    The reactivation of organophosphate-inhibited acetylcholinesterase (AChE) by oximes inevitably results in the formation of highly reactive phosphoryloximes (POX), which are able to re-inhibit the enzyme. In this study, the dependence of POX formation on AChE concentration was investigated with sarin-inhibited human erythrocyte AChE (EryAChE). A marked dependence was found with obidoxime but not with the experimental oxime HI 6, suggesting great differences in the decomposition rates of the respective POXs. At a physiological erythrocyte content the reactivation of EryAChE was markedly affected by POX with obidoxime and pralidoxime (2-PAM) but not with the newer oximes HI 6 and HLö 7. Addition of extensively dialysed, sarin-treated human plasma reduced the reactivation by obidoxime and 2-PAM even more. Obidoxime and 2-PAM were superior to HI 6 and HLö 7 in reactivating butyrylcholinesterase (BChE). This effect was pronounced in diluted plasma, but was obscured in concentrated plasma, probably because of re-inhibition by the generated POX. Addition of native erythrocytes to sarin-treated plasma resulted in marked inhibition of EryAChE in the presence of obidoxime, suggesting a higher affinity of the POX for EryAChE. The results indicate that obidoxime and 2-PAM may reactivate sarin-inhibited AChE insufficiently due to re-inhibition by the POX formed. In addition, the re-inhibition of Ery-AChE may be aggravated by the POX that is produced during BChE reactivation. These reactions must be regarded as therapeutically detrimental and disqualify those oximes which are capable of forming stable POX by reactivation of BChE.

    Topics: Acetylcholinesterase; Butyrylcholinesterase; Cholinesterase Inhibitors; Cholinesterase Reactivators; Erythrocyte Aging; Erythrocytes; Humans; In Vitro Techniques; Obidoxime Chloride; Oximes; Pralidoxime Compounds; Pyridines; Pyridinium Compounds; Sarin

2000
Dimethylphosphoryl-inhibited human cholinesterases: inhibition, reactivation, and aging kinetics.
    Archives of toxicology, 1999, Volume: 73, Issue:1

    Human poisoning by organophosphates bearing two methoxy groups, e.g. by malathion, paraoxon-methyl, dimethoate and oxydemeton-methyl, is generally considered to be rather resistant to oxime therapy. Since the oxime effectiveness is influenced not only by its reactivating potential but also by inhibition, aging and spontaneous reactivation kinetics, experiments were performed with human acetyl- (AChE) and butyrylcholinesterase (BChE) to determine the respective kinetic constants. The efficacy of obidoxime in reactivating dimethylphosphoryl-AChE was 40, 9 and 3 times higher than of HI 6, pralidoxime and HLö 7, respectively. Aging (t1/2 3.7 h) and spontaneous reactivation (t1/2 0.7 h) occurred concomitantly, with the portion of the aged enzyme being dependent on the presence of excess inhibitor. Calculation of steady-state AChE activity in the presence of inhibitor and oxime revealed that obidoxime was superior to pralidoxime. In addition, organophosphate concentrations up to 10(-6) M (paraoxon-methyl) and 10(-4) M (oxydemeton-methyl) could be counteracted at clinically relevant oxime concentrations (10 microM). These data indicate that oximes may effectively reactivate human dimethylphosphoryl-AChE. Failure of oximes may be attributed to megadose intoxications and to prolonged time intervals between poison uptake and oxime administration. The potency of the oximes to reactivate dimethylphosphoryl-BChE was much lower and the spontaneous reactivation slower (t1/2 9 h), while aging proceeded at a comparable rate. Thus, BChE activity determination for diagnosis and therapeutic monitoring may give no reliable information on AChE status.

    Topics: Acetylcholinesterase; Butyrylcholinesterase; Cholinesterase Inhibitors; Cholinesterase Reactivators; Cholinesterases; Humans; Insecticides; Kinetics; Obidoxime Chloride; Organophosphorus Compounds; Organothiophosphorus Compounds; Oximes; Paraoxon; Pralidoxime Compounds; Pyridines; Pyridinium Compounds; Time Factors

1999
Reactivating potency of obidoxime, pralidoxime, HI 6 and HLö 7 in human erythrocyte acetylcholinesterase inhibited by highly toxic organophosphorus compounds.
    Archives of toxicology, 1998, Volume: 72, Issue:4

    The treatment of poisoning by highly toxic organophosphorus compounds (nerve agents) is unsatisfactory. Until now, the efficacy of new potential antidotes has primarily been evaluated in animals. However, the extrapolation of these results to humans is hampered by species differences. Since oximes are believed to act primarily through reactivation of inhibited acetylcholinesterase (AChE) and erythrocyte AChE is regarded to be a good marker for the synaptic enzyme, the reactivating potency can be investigated with human erythrocyte AChE in vitro. The present study was undertaken to evaluate the ability of various oximes at concentrations therapeutically relevant in humans to reactivate human erythrocyte AChE inhibited by different nerve agents. Isolated human erythrocyte AChE was inhibited with soman, sarin, cyclosarin, tabun or VX for 30 min and reactivated in the absence of inhibitory activity over 5-60 min by obidoxime, pralidoxime, HI 6 or HLö 7 (10 and 30 microM). The AChE activity was determined photometrically. The reactivation of human AChE by oximes was dependent on the organophosphate used. After soman, sarin, cyclosarin, or VX the reactivating potency decreased in the order HLö 7 > HI 6 > obidoxime > pralidoxime. Obidoxime and pralidoxime were weak reactivators of cyclosarin-inhibited AChE. Only obidoxime and HLö 7 reactivated tabun-inhibited AChE partially (20%), while pralidoxime and HI 6 were almost ineffective (5%). Therefore, HLö 7 may serve as a broad-spectrum reactivator in nerve agent poisoning at doses therapeutically relevant in humans.

    Topics: Acetylcholinesterase; Antidotes; Cholinesterase Inhibitors; Cholinesterase Reactivators; Erythrocytes; Humans; Obidoxime Chloride; Organophosphates; Oximes; Pralidoxime Compounds; Pyridines; Pyridinium Compounds; Soman

1998
In vitro effects of toxogonin, HI-6 and HLö-7 on the release of [3H]acetylcholine from peripheral cholinergic nerves in rat airway smooth muscle.
    European journal of pharmacology, 1996, Apr-22, Volume: 301, Issue:1-3

    The purpose of this work was to evaluate the possible non-reactivating effects of toxogonin (1,1'[oxybis(methylene)]bis[4-[hydroxyimino) methyl]pyridinium]-dichloride), HI-6 (1-[[[(4-aminocarbonyl)pyridinio] methoxy]methyl]-2-[(hydroxyimino)methyl]pyridinium-dichloride) and HLö-7 (pyridinium, 1-[[[4-(aminocarbonyl)pyridino]methoxy] methyl]-2,4-bis-[(hydroxyimino)methyl]diiodide) on the release of acetylcholine from cholinergic nerves. The oximes have been tested in our rat bronchial smooth muscle model, with respect to the effects of oximes on the K+ (51 mM)-evoked release of [3H]acetylcholine in the presence and absence of soman (1.0 microM). Toxogonin (100 microM) had no effect on the K(+)-evoked release of [3H]acetylcholine in the presence or absence of soman (1.0 microM). Similar results were found for HI-6 (100 microM). In contrast, HLö-7 (100 microM) enhanced the K(+)-evoked release of [3H]acetylcholine in the absence of soman. In the presence of soman HLö-7 did not alter the release of [3H]acetylcholine induced by K+ stimulation. The potentiating effect of HLö-7 on the release of [3H]acetylcholine could be blocked by the L-, N- and P-Ca2+ channel blockers verapamil (0.1 and 1.0 microM), omega-conotoxin GVIA (1.0 microM) and omega-agatoxin IV-A (0.2 microM), respectively. Muscarinic receptor antagonists (atropine (10 microM), pirenzepine (M1) (1.0 microM) and methoctramine (M2) (1.0 microM) had no effects on the HLö-7 (100 microM)-enhanced release of [3H]acetylcholine. Protein kinase inhibitors (H-7 (20 microM), calphostin C (1.0 microM) and KN-62 (10 microM) inhibited the HLö-7 (100 microM)-enhanced K(+)-evoked release of [3H]acetylcholine. The results showed that only HLö-7 had a direct enhancing effect on the release of acetylcholine through activation or opening of Ca2+ channels and a subsequent protein phosphorylation in the nerve terminal.

    Topics: Acetylcholine; Acetylcholinesterase; Animals; Bronchi; Butyrylcholinesterase; Calcium Channel Blockers; Cholinesterase Inhibitors; Cholinesterase Reactivators; Enzyme Activation; Male; Muscle, Smooth; Obidoxime Chloride; Oximes; Parasympathetic Nervous System; Peripheral Nerves; Protein Kinase Inhibitors; Protein Kinases; Pyridines; Pyridinium Compounds; Rats; Rats, Wistar; Soman

1996
Reactivation by various oximes of human erythrocyte acetylcholinesterase inhibited by different organophosphorus compounds.
    Archives of toxicology, 1996, Volume: 70, Issue:8

    The new bispyridinium oximes HI 6 and HLö 7 are promising antidotes against poisoning by highly toxic organophosphorus compounds, i.e. nerve agents. Until now, their ability to reactivate pesticide inhibited human acetylcholinesterase (AChE) has not been elucidated. For this purpose human erythrocyte AChE (EC 3.1.1.7) was inhibited (30 min) by chlorfenvinphos, dichlorvos, dicrotophos, heptenophos, mevinphos, monocrotophos, paraoxon, phosphamidon, trichlorfon, malaoxon, omethoate, oxydemeton-methyl or methamidophos by 85-98% of control. After removal of excess inhibitor, obidoxime, pralidoxime (2-PAM), HI 6 or HLö 7 (10, 30 or 100 mumol/l) were added and the AChE activity was measured spectrophotometrically at various times thereafter (5-60 min). The oximes significantly, but not completely, reactivated organophosphate inhibited AChE. The velocity and extent of reactivation were dependent on the oxime and its concentration. In all cases obidoxime was superior to the three other oximes, followed by HLö 7, 2-PAM and HI 6. In most cases obidoxime and HLö 7 were most effective at 10 or 30 mumol/l while 2-PAM and HI 6 needed 100 mumol/l. These data suggest that 2-PAM HI 6 and HLö 7 are less patent than obidoxime in reactivating human AChE inhibited by organophosphate pesticides.

    Topics: Acetylcholinesterase; Cholinesterase Inhibitors; Cholinesterase Reactivators; Erythrocytes; Humans; Oximes; Pyridines; Pyridinium Compounds

1996
Pharmacokinetics of atropine in dogs after i.m. injection with newly developed dry/wet combination autoinjectors containing HI 6 or HLö 7.
    Archives of toxicology, 1996, Volume: 70, Issue:5

    To cope with the rapid onset of the life-threatening cholinergic crisis after poisoning with organophosphorus compounds, atropine-oxime preparations should be available in autoinjectors allowing i.m. administration also in the absence of a physician. Such a scenario is conceivable in the battlefield, when nerve agents are disseminated, and can no longer be excluded in civilian areas, as demonstrated most recently in Tokyo. In addition, autoinjectors may be of value in agriculture when medical care is remote. The use of second generation oximes with broad antidotal spectrum, e.g., HI 6 (1-(((4-(aminocarbonyl)pyridinio)methoxy)methyl)-2-((hydr oxyimino)methyl) pyridinium dichloride monohydrate; CAS 34433-31-3) and HLö 7 (1-(((4-(aminocarbonyl)pyridinio)methoxy)methyl) 2,4-bis((hydroxyimino)methyl) pyridinium dimethanesulfonate; CAS 145613-73-6) is only possible in dry/wet autoinjectors because their stability is limited in concentrated solution. To detect a possible delay in atropine absorption by the two oximes, the pharmacokinetics of atropine after "autoinjection" in beagle dogs were determined. Commercially available autoinjectors from two manufacturers [STI International Ltd (BJ) and Astra Tech (AT)] were filled with atropine sulfate, either alone (2 mg) or in combination with HI 6 (500 mg) and HLö 7 (200 mg), respectively, and injected according to a complete cross-over design. Atropine concentration was determined as l-hyoscyamine equivalents in a radioreceptor assay (RRA). In the range of 0.1-6.9 ng/ml, atropine sulfate displaced [N-methyl-3H]-scopolamine methyl chloride ([3H]NMS) competitively from rat cerebral cortex membranes. At 200 pmol/l [3H]NMS, IC50 was 1.4 +/- 0.1 x 10(-9) M atropine (CV = 8.1%). The intra-assay deviation was about 6%; day-to-day deviation in determination of 1 nM (0.695 ng/ml) atropine was 2.6% (CV = 5.2%). AT autoinjectors containing HI 6 delivered only 1.81 mg atropine sulfate while 2.14 mg was released by the other injectors. According to the manufacturer, the reduced delivery was caused by a defective Teflon-coated O-ring as detected later on in the batch used. To allow comparison of the bioavailability of atropine from various autoinjectors, the AUCs were normalized to a constant dose. The atropine absorption half-time (7 min) was not affected either by the autoinjector type or by the combination with oximes. The other pharmacokinetic data likewise did not reveal any differences between the groups. Maximal plasma conc

    Topics: Animals; Atropine; Binding, Competitive; Cholinesterase Reactivators; Chromatography, High Pressure Liquid; Dogs; Drug Combinations; Half-Life; Injections, Intramuscular; Male; Muscarinic Antagonists; Oximes; Pyridines; Pyridinium Compounds; Radioligand Assay; Rats; Rats, Sprague-Dawley

1996
Effect of pyridostigmine pretreatment on cardiorespiratory function in tabun poisoning.
    Human & experimental toxicology, 1995, Volume: 14, Issue:8

    1. The effect of pyridostigmine on cardiorespiratory function after oxime + atropine injection was investigated in tabun poisoned guinea-pigs and without tabun poisoning. 2. The trachea, a carotid artery and jugular vein were cannulated in female urethane-anaesthetised Pirbright-white guinea-pigs. After baseline measurements the animals received pyridostigmine (0.05 mumol kg-1) and 30 min later atropine (29.5 mumol kg-1) plus obidoxime, HI 6 or HLö 7 (30 or 100 mumol kg-1) or tabun (1.85 mumol kg-1 = 5 x LD50) followed by oxime + atropine treatment (all i.v.). Erythrocyte, brain and diaphragm acetylcholinesterase (AChE) activity were determined. Similar groups without pretreatment were included for comparison. 3. Pyridostigmine aggravated the oxime + atropine induced hypotension and prevented the increase in heart rate but not the respiratory stimulation. The pyridostigmine inhibited AChE recovered only in the 100 mumol kg-1 kg oxime groups at the end of the experiment. 4. In tabun poisoning, pyridostigmine reduced the oxime + atropine induced circulatory recovery and decreased the survival time and rate. It did not affect the therapeutic oxime + atropine effect on respiratory function. 5. These results suggest that pyridostigmine enhances oxime + atropine related circulatory depression which may be the reason for the reduced efficacy of oxime + atropine treatment in tabun poisoning. The possible mechanisms are discussed.

    Topics: Animals; Atropine; Blood Pressure; Cholinesterase Inhibitors; Cholinesterase Reactivators; Female; Guinea Pigs; Heart Rate; Hemodynamics; Injections, Intravenous; Obidoxime Chloride; Organophosphate Poisoning; Organophosphates; Oximes; Pyridines; Pyridinium Compounds; Pyridostigmine Bromide; Respiration

1995
Effect of atropine and bispyridinium oximes on respiratory and circulatory function in guinea-pigs poisoned by sarin.
    Toxicology, 1995, Jan-06, Volume: 95, Issue:1-3

    During the past decade the oxime HI 6(1-[[[4-(aminocarbonyl)pyridinio]methoxy]methyl]-2- [(hydroxyimino)methyl] pyridinium dichloride) was shown to improve survival in nerve agent poisoning (in combination with atropine). Recent studies indicate, that HLö 7 (1-[[[4-(aminocarbonyl)pyridinio]methoxy]methyl]-2,4-bis [(hydroxyimino)methyl] pyridinium diiodide or dimethanesulfonate) is also an effective antidote in nerve agent poisoning but, with both oximes, data on restoration of respiration and circulation are scarce. The ability of HLö 7 or HI 6 with atropine to improve the respiratory and circulatory function in sarin-poisoned guinea-pigs was therefore investigated. Female Dunkin-Hartley guinea-pigs were anaesthetised with urethane (1.8 g/kg) and the arteria carotis, vena jugularis and trachea were cannulated. After baseline measurements the animals received 100 or 200 micrograms/kg sarin, and 2 min later the antidotes (all i.v.): 10 mg/kg atropine sulfate or a combination of atropine and HLö 7 or HI 6 (30 mumol/kg, each). Respiratory and circulatory parameters were recorded for the whole experimental period of 60 min or until the death of the animal. Brain and diaphragm acetylcholinesterase (AChE) activity was determined in each animal after the experiment. Poisoning by sarin resulted in a rapid respiratory arrest within 5 min. Atropine treatment was only partially effective in improving respiration after 100 micrograms/kg sarin but was ineffective after 200 micrograms/kg sarin. Therapy of sarin-poisoned animals with atropine plus oxime further improved respiration to various extents, restored circulation and increased survival time, HLö 7 being more effective than HI 6. Diaphragm and brain AChE were reactivated by HLö 7 and, to a minor extent, by HI 6. The results of this investigation suggest, that at equimolar doses (30 mumol/kg) the new bispyridinium dioxime HLö 7 has a higher therapeutic efficacy in sarin-poisoned guinea-pigs when compared to HI 6 (both in combination with atropine).

    Topics: Acetylcholinesterase; Animals; Antidotes; Atropine; Blood Pressure; Cholinesterase Reactivators; Drug Therapy, Combination; Female; Guinea Pigs; Heart Rate; Oximes; Poisoning; Pyridines; Pyridinium Compounds; Respiration; Sarin

1995
Pharmacokinetics of the oximes HI 6 and HLö 7 in dogs after i.m. injection with newly developed dry/wet autoinjectors.
    Archives of toxicology, 1994, Volume: 68, Issue:8

    The rapid onset of cholinergic crisis after intoxication with highly toxic organophosphorus compounds calls for pre-clinical administration of effective antidotes as early as possible. For this purpose, i.m. administration of the antidotes by autoinjectors is desired to allow early treatment also in the absence of a physician. Besides atropine, oximes with broad antidotal spectrum are considered valuable adjuncts that should be included in antidotal mixtures. To circumvent the problem of limited stability of the new-generation oximes, dry/wet autoinjectors were developed in which the unstable solid is dissolved by a diluent in an adjacent chamber upon activation of the device. In this study the tolerance, bioavailability and pharmacokinetics of 500 mg HI 6 [1-(((4-(aminocarbonyl) pyridinio)methoxy) methyl)-2-((hydroxyimino)methyl) pyridinium dichloride monohydrate] or 200 mg HLö 7 [1-(((4-(aminocarbonyl) pyridinio)methoxy)methyl)-2,4- bis((hydroxyimino)methyl)pyridinium dimethanesulfonate] in combination with 2 mg atropine sulfate versus atropine alone, delivered by two dry/wet autoinjector types, were investigated in eight male beagle dogs (16 kg) in a complete cross-over design. The dogs tolerated the six injections with 3-week intervals without any symptoms of discomfort. Nonetheless, CPK activity increased, peaking at 6 h after injection. In contrast to atropine which merely led to a marginal increase, HI 6 plus atropine increased the baseline CPK activity about 10-fold, and HLö 7 plus atropine about 20-fold, regardless of the injector type. The HI 6 autoinjectors from Astra Tech were from an irregular production batch which did not deliver the declared HI 6 dose. The HLö 7 autoinjectors from Astra Tech and both Binaject autoinjectors from STI functioned well: the bioavailability was complete with tmax values of about 25 min as observed after conventional i.m. injection. The absorption half-time was about 8 min, elimination t1/2 about 50 min, and Vapp 0.26 l/kg. The urinary recovery of unchanged oximes was 70-80%, the renal clearance being the same as for inulin. Unexpectedly, hematocrit and hemoglobin content of blood decreased by about 15% within 2 h and reached pre-treatment values after 6-24 h. This decrease was observed with all three drug treatments and could not be accounted for by blood loss (< 4%), thus pointing to an atropine effect. In conclusion, the newly developed dry/wet autoinjectors appear suitable for the administration of atropine a

    Topics: Animals; Antidotes; Atropine; Biological Availability; Cholinesterase Reactivators; Dogs; Hematocrit; Injections, Intramuscular; Male; Oximes; Pyridines; Pyridinium Compounds; Software

1994
Effect of atropine, HLö 7 and HI 6 on respiratory and circulatory function in guinea-pigs poisoned by O-ethyl S-[2-(diisopropylamino) ethyl] methylphosponothioate (VX).
    Pharmacology & toxicology, 1994, Volume: 75, Issue:5

    In a guinea-pig model with on-line respiratory and circulatory monitoring the therapeutic efficacy of atropine, HLö 7 and HI 6 in VX poisoning was compared. In female urethane-anaesthetized Pirbright-white guinea-pigs the a. carotis, v. jugularis and trachea were cannulated. After base line measurements the animals received VX (22.5, 45 or 90 micrograms/kg = 5, 10 or 20 x LD50) intravenously and 2 min. later the antidotes: HLö 7 or HI 6 (30 mumol/kg, each) or atropine 10 mg/kg or a combination of atropine and one of the oximes (all intravenously). Respiratory and circulatory parameters were recorded for 60 min. or until death of the animal. Erythrocyte, brain and diaphragm acetylcholinesterase (AChE) activity was determined after the experiment. VX poisoning caused a rapid respiratory arrest within 4-5 min. Atropine treatment was effective in improving the respiratory function after VX, 22.5 micrograms/kg, but had only a small effect after the higher VX doses. The treatment of VX (10 or 20 x LD50) poisoned animals with oxime plus atropine improved respiration to various extents, restored circulation and prolonged the survival time, HLö 7 being more effective than HI 6 after VX 90 micrograms/kg. Oximes alone were completely ineffective. Erythrocyte and diaphragm AChE was reactivated by HLö 7 and, less effectively, by HI 6, while brain AChE remained almost completely inhibited in all groups. The results of this investigation demonstrate a reasonable efficacy of atropine after lower VX doses and of HLö 7 and HI 6 (plus atropine) after high-dose VX poisoning, HLö 7 being slightly more effective than HI 6.

    Topics: Acetylcholinesterase; Animals; Atropine; Brain; Cholinesterase Inhibitors; Cholinesterase Reactivators; Drug Combinations; Erythrocytes; Female; Guinea Pigs; Hemodynamics; Organothiophosphorus Compounds; Oximes; Poisoning; Pyridines; Pyridinium Compounds; Respiration

1994
Efficacy of HI-6 and HLö-7 in preventing incapacitation following nerve agent poisoning.
    Pharmacology, biochemistry, and behavior, 1994, Volume: 49, Issue:4

    The therapeutic efficacy of the oximes HI-6 and HLö-7 (132.5 mumol/kg), in combination with atropine, in soman- or tabun-intoxicated guinea pigs was compared, particularly with respect to recovery of shuttlebox performance and electroencephalograms (EEGs). After 1.5 x LD50 soman SC, therapy with HI-6 or HLö-7 resulted in survival of 87.5% of the animals in each group. In both groups postintoxication performance decrements and EEG abnormalities lasted approximately 2 weeks after intoxication. After 3 x LD50 soman all HLö-7-treated animals died within 5 h; 70% of the HI-6-treated animals were still alive after 8 h; however, only 10% survived more than 24 h. After 2 x LD50 tabun 36% of the HI-6-treated animals died; HLö-7 prevented lethality and led to faster recovery of performance and EEG than after HI-6. Even after 7.5 x LD50 tabun, followed by HLö-7, full recovery was reached within 1 week in the surviving animals (82%). In soman-intoxicated guinea pigs HI-6 is therapeutically slightly more effective than HLö-7. HLö-7 is far more effective, under similar conditions, against tabun intoxication than HI-6.

    Topics: Animals; Atropine; Behavior, Animal; Chemical Warfare Agents; Cholinesterase Inhibitors; Cholinesterase Reactivators; Conditioning, Operant; Electroencephalography; Guinea Pigs; Lethal Dose 50; Organophosphates; Oximes; Pyridines; Pyridinium Compounds; Respiratory Mechanics; Soman

1994
Comparison of the therapeutic effects and pharmacokinetics of HI-6, HLö-7, HGG-12, HGG-42 and obidoxime following non-reactivatable acetylcholinesterase inhibition in rats.
    Archives of toxicology, 1994, Volume: 68, Issue:4

    The oximes HI-6, HLö-7, HGG-12, HGG-42 and obidoxime were used in a previously developed rat model to evaluate the therapeutic effects of oximes other than acetylcholinesterase (AChE) reactivation (so-called "non-reactivating effects"). To test this anaesthetized, atropinized and artificially ventilated rats (n = 8 or 16) were poisoned with a three times LD50 dose of the potent AChE-inhibitor crotylsarin (CRS, i.v.). CRS-inhibited rat AChE dealkylates instantaneously, thereby excluding AChE reactivation by the oximes. Five minutes after poisoning the rats were treated (i.v.) with an oxime or saline and 10 min later artificial ventilation was terminated. Survival times were determined. Saline-treated animals died within 15 min. In comparison, treatment with HI-6, HLö-7, HGG-12, HGG-42 or obidoxime resulted in a significant prolongation of survival time. In the groups treated with HLö-7, HI-6 or HGG-12, 12-37% of the animals survived more than 24 h. It was investigated whether differences in therapeutic effectiveness are caused by differences in pharmacokinetics of the oximes. The plasma half-lives of HI-6, HLö-7, HGG-12, HGG-42 and obidoxime amounted to 67, 63, 27, 55 and 179 min, respectively. At doses of 75 or 150 mumol/kg, all oximes could be detected in brain and medulla oblongata in similar amounts (6-10 nmol/g tissue). In vitro, all oximes were effective in restoring failure of neuromuscular transmission (NMT) caused by CRS, albeit with varying potency. All oximes bound with affinities in the micromolar range to rat brain muscarinic receptors.(ABSTRACT TRUNCATED AT 250 WORDS)

    Topics: Animals; Binding, Competitive; Brain; Cholinesterase Inhibitors; Cholinesterase Reactivators; In Vitro Techniques; Male; Neuromuscular Junction; Obidoxime Chloride; Oximes; Pyridines; Pyridinium Compounds; Quinuclidinyl Benzilate; Rats; Sarin; Synaptic Transmission

1994
Treatment of tabun poisoned guinea-pigs with atropine, HLö 7 or HI 6: effect on respiratory and circulatory function.
    Archives of toxicology, 1994, Volume: 68, Issue:4

    The oxime HI 6 (in combination with atropine) is considered to be an effective antidote in soman intoxication but was shown to be less effective in tabun poisoning. In contrast to HI 6, first in vitro studies with HLö 7 demonstrated a reasonable reactivating potency at acetylcholinesterase (AChE) inhibited by soman and tabun. Therefore, the therapeutic efficacy of HLö 7, HI 6 and obidoxime (with and without atropine) was compared in tabun poisoned guinea-pigs. In addition, the therapeutic effect of atropine in guinea-pigs poisoned by various doses of tabun was investigated. Female Pirbright-white guinea-pigs were anaesthetized with urethane (1.8 g/kg) and the carotid artery, jugular vein and trachea were cannulated. After baseline measurements the animals received tabun, 60, 180 or 300 micrograms/kg, and 2 min later the antidotes (all i.v.): obidoxine, HLö 7, or HI 6 (30 or 100 mumol/kg, each) or atropine 10 mg/kg or a combination of atropine and one of the oximes. Respiratory and circulatory parameters were recorded for 60 min or until the death of the animal. Erythrocyte, brain and diaphragm AChE activity was determined in every animal after the experiment. Poisoning by tabun resulted in a rapid deterioration of respiratory function and respiratory arrest within 5 min. Atropine treatment was very effective in improving the respiratory function after tabun 60 micrograms/kg but was ineffective after tabun 300 micrograms/kg. However, circulatory parameters were restored almost completely in all atropine therapy groups. Therapy of tabun 300 microns/kg poisoned animals with atropine plus oxime (30 micromol/kg) improved respiration to a variable extent and restored circulation.(ABSTRACT TRUNCATED AT 250 WORDS)

    Topics: Animals; Atropine; Blood Circulation; Cholinesterase Reactivators; Female; Guinea Pigs; Lethal Dose 50; Obidoxime Chloride; Organophosphate Poisoning; Organophosphates; Oximes; Pyridines; Pyridinium Compounds; Respiration

1994
Investigation of acute cardiovascular and respiratory toxicity of HLö 7 dimethanesulfonate and HI 6 dichloride in anaesthetized guinea-pigs.
    Pharmacology & toxicology, 1993, Volume: 73, Issue:2

    The bis-pyridinium dioxime HLö 7 is considered to possess promising therapeutic properties in the treatment of organophosphate poisoning. Acute circulatory and respiratory effects of HLö 7 and HI 6 were therefore compared in anaesthetized guinea-pigs. Female Pirbright white guinea-pigs were anaesthetized with urethane and the carotid artery, jugular vein and trachea were cannulated. Saline or atropine, 10 mg/kg, or HLö 7 or HI 6 (30 or 100 mumol/kg, each) or atropine plus oxime were injected intravenously after base line measurements. Respiratory and circulatory parameters were recorded for 60 min., then blood was drawn for AChE measurement. Injection of HLö 7 or HI 6 alone resulted in a temporary, dose-dependent hypotension, an almost unchanged heart rate and a slight respiratory stimulation. A more severe hypotension appeared after the administration of atropine plus HLö 7 or HI 6. In these groups heart rate and respiration were markedly stimulated. Measurement of AChE activity in blood samples revealed no impairment by HLö 7 or HI 6 with or without atropine. These results suggest that HLö 7 has only transient effects on the cardiorespiratory system after intravenous administration and its safety regarding acute circulatory and respiratory toxicity is comparable to HI 6.

    Topics: Acetylcholinesterase; Anesthesia; Animals; Atropine; Blood Pressure; Cardiovascular Diseases; Cardiovascular System; Cholinesterase Reactivators; Female; Guinea Pigs; Heart Rate; Oximes; Pyridines; Pyridinium Compounds; Respiration Disorders; Respiratory System

1993
Atropine and oxime treatment in lethal soman poisoning of anaesthetized guinea-pigs: HLö 7 dimethanesulfonate versus HI 6 dichloride.
    Pharmacology & toxicology, 1993, Volume: 72, Issue:1

    The oxime HI 6 is considered to be effective in soman poisoning and less effective in tabun poisoning. Recently, HLö 7 was shown to reactivate acetylcholinesterase (AChE) inhibited by soman and tabun. Therefore, the efficacy of HLö 7 and HI 6 was compared in soman poisoned guinea-pigs. Female Pirbright-white guinea-pigs were anaesthetized with urethane (1.8 g/kg) and the a. carotis, v. jugularis and trachea were cannulated. After base line measurements soman 0.08 mg/kg (= 5 x LD50) or 0.16 mg/kg (= 10 x LD50) was injected intravenously, 2 min. later the antidotes were applied intravenously: HLö 7 0.03 or 0.1 mmol/kg, HI 6 0.03 or 0.1 mmol/kg, atropine 10 mg/kg, or a combination of atropine and an oxime. Respiratory and circulatory parameters were recorded for 60 min. or until the death of the animal. The injection of 5 x LD50 soman resulted in a rapid respiratory arrest followed by circulatory failure in the soman and soman plus oxime groups (survival time about 7 min). Atropine restored the circulatory parameters to base line but was unable to provide a sufficient respiratory function (survival time 26 min.). The combination therapy with atropine plus HLö 7 or HI 6 improved the respiration sufficiently, restored the circulation completely, and prolonged the survival time to about 50 min. Atropine treatment was insufficient in animals poisoned with 10 x LD50 soman. The combination of atropine and HLö 7 or HI 6 improved respiration, circulation, and survival time to various extent. Despite of the striking therapeutic effect no reactivation of erythrocyte AChE by the antidotes was observed.(ABSTRACT TRUNCATED AT 250 WORDS)

    Topics: Acetylcholinesterase; Anesthesia; Animals; Antidotes; Atropine; Cholinesterase Reactivators; Disease Models, Animal; Drug Therapy, Combination; Erythrocytes; Female; Guinea Pigs; Hemodynamics; Oximes; Poisoning; Pyridines; Pyridinium Compounds; Respiration; Soman

1993
Efficacy of HLö-7 and pyrimidoxime as antidotes of nerve agent poisoning in mice.
    Archives of toxicology, 1992, Volume: 66, Issue:3

    The toxicity and efficacy of two oximes, HLö-7 and pyrimidoxime, were evaluated in mice and compared to those obtained with HI-6. HLö-7 and pyrimidoxime produced 24 h LD50 values of 356 and 291 mg/kg (i.p.), respectively. In combination with atropine (17.4 mg/kg, i.p.), HLö-7 was a very efficient therapy against poisoning by 3 x LD50 dose of soman, sarin and GF and 2 x LD50 dose of tabun with ED50 values of 12.4, 0.31, 0.32 and 25.2 mg/kg, respectively. In contrast, pyrimidoxime was a relatively poor therapy which resulted in ED50 values of greater than 150, 5.88, 100 and 71 mg/kg against poisoning by soman, sarin, GF and tabun, respectively. HLö-7 produced significant (p less than 0.05) reactivation of phosphorylated acetylcholinesterase, in vivo, resulting in 47, 38, 27 and 10% reactivation of sarin, GF, soman and tabun inhibited mouse diaphragm acetylcholinesterase, respectively. HLö-7 also antagonized sarin-induced hypothermia in mice suggesting that it reactivated central acetylcholinesterase. The potential of HLö-7 as a replacement oxime for the treatment of nerve agent poisoning is discussed.

    Topics: Animals; Antidotes; Cholinesterase Inhibitors; Cholinesterase Reactivators; Imidazoles; Lethal Dose 50; Male; Mice; Neuromuscular Blocking Agents; Organophosphate Poisoning; Organophosphates; Oximes; Pyridines; Pyridinium Compounds; Sarin; Soman

1992