histogranin has been researched along with 1-2-diaminobenzene* in 1 studies
1 other study(ies) available for histogranin and 1-2-diaminobenzene
Article | Year |
---|---|
Histogranin-like antinociceptive and anti-inflammatory derivatives of o-phenylenediamine and benzimidazole.
Histogranin (HN)-like nonpeptides were designed and synthesized using benzimidazole (compound 1) and o-phenylenediamine (compounds 2-7) as scaffolds for the attachment of phenolic hydroxyl and basic guanidino pharmacophoric elements present in HN. The benzimidazole derivative N-5-guanidinopentanamide-(2R)-yl-2-(p-hydroxybenzyl)-5-carboxybenzimidazole (1) and the o-phenylenediamine derivative N-5-guanidinopentanamide-(2S)-yl-2-N-(p-hydroxyphenylacetyl) phenylenediamine (2) were more potent analgesics than HN in both the mouse writhing (5.5 and 3.5 as potent as HN, respectively) and tail-flick (11.8 and 8.0 as potent as HN, respectively) pain assays. Improvements in the potencies and times of action of compound 2 in the mouse writhing test were obtained by attaching carboxyl (6)or p-Cl-benzoyl (7) groups at position 4 of the (2R) o-phenylenediamine derivative (5). In rats, compounds 2 (80 nmol i.t.), 6 (36 nmol i.t.), and 7 (18 nmol i.t.) were effective in blocking both persistent inflammatory pain in the formalin test and hyperalgesia in the complete Freund adjuvant assay. Compounds 2, 6, and 7, but not compound 1 at 10 nmol (i.c.v.) also mimicked the HN (60 nmol i.c.v.) blockade of N-methyl-D-aspartate (NMDA)-induced convulsions in mice. Finally, in primary cultures of rat alveolar macrophages, HN and compounds 1, 2, 6, and 7 (10(-8) M) significantly blocked lipopolysaccharide-induced cyclooxygenase-2 induction and prostaglandin E(2) secretion. These studies indicate that both derivatives of benzimidazole and o-phenylenediamine mimic the in vivo antinociceptive and in vitro anti-inflammatory effects of HN, but the HN protection of mice against NMDA-induced convulsions is mimicked only by the o-phenylenediamine derivatives. Topics: Analgesics; Animals; Anti-Inflammatory Agents; Benzimidazoles; Cyclooxygenase 2; Dinoprostone; Disease Models, Animal; Drug Interactions; Isoenzymes; Lipopolysaccharides; Macrophages; Male; Mice; Pain; Phenylenediamines; Prostaglandin-Endoperoxide Synthases; Proteins; Rats; Rats, Sprague-Dawley | 2004 |