hirugen has been researched along with bivalirudin* in 2 studies
2 other study(ies) available for hirugen and bivalirudin
Article | Year |
---|---|
Antithrombotic effects of synthetic peptides targeting various functional domains of thrombin.
To determine in vivo functional roles for thrombin's structural domains, we have compared the relative antithrombotic and antihemostatic effects of (i) catalytic-site antithrombin peptide, D-Phe-Pro-Arg; (ii) exosite antithrombin peptide, the C-terminal tyrosine-sulfated dodecapeptide of hirudin; and (iii) bifunctional antithrombin peptide, a 20-mer peptide combining catalytic-site antithrombin peptide and exosite antithrombin peptide with a polyglycyl linker. All three peptides inhibited thrombin-mediated platelet aggregation and fibrin formation in vitro. In vivo thrombus formation was measured in real time as 111In-labeled platelet deposition and 125I-labeled fibrin accumulation on thrombogenic segments incorporated into chronic exteriorized arteriovenous access shunts in baboons. Under low flow conditions, the continuous infusion of peptides reduced thrombus formation onto collagen-coated tubing by half at doses (ID50) and corresponding concentrations (IC50) of 800 nmol per kg per min and 400 nmol/ml for catalytic-site antithrombin peptide, greater than 1250 nmol per kg per min and greater than 1500 mumol/ml for exosite antithrombin peptide, and 50 nmol per kg per min and 25 nmol/ml for bifunctional antithrombin peptide. Under arterial flow conditions, systemically administered bifunctional antithrombin peptide decreased thrombus formation in a dose-dependent manner for segments of collagen-coated tubing or prosthetic vascular graft ID50 and IC50 values of 120 nmol per kg per min and 15 nmol/ml; this dose also produced intermediate inhibition of hemostatic function [bleeding time, 21 +/- 3 min vs. 4.5 +/- 0.5 min (baseline values); P less than 0.001; activated partial thromboplastin time, 285 +/- 13 sec vs. 31 +/- 3 sec (baseline), P less than 0.001]. In contrast, thrombus formation onto segments of endarterectomized aorta was potently decreased by bifunctional antithrombin peptide with an ID50 value of 2.4 nmol per kg per min and an IC50 value of 0.75 nmol/ml, a systemic dose that failed to affect hemostasis. Thus, inhibiting both thrombin's catalytic and exosite domains increases antithrombotic potency by several orders of magnitude over the inhibition of either domain alone, particularly at sites of deep arterial injury. Topics: Amino Acid Sequence; Animals; beta-Thromboglobulin; Fibrinolytic Agents; Fibrinopeptide A; Hirudins; Male; Molecular Sequence Data; Papio; Peptide Fragments; Peptides; Platelet Factor 4; Recombinant Proteins; Thrombin | 1992 |
Inhibition of the amplification reactions of blood coagulation by site-specific inhibitors of alpha-thrombin.
Hirudin and hirulog-1 [D-Phe-Pro-Arg-Pro-[Gly]4-desulphohirudin-(54-65)] abrogate the enzyme activities of alpha-thrombin by binding the enzyme simultaneously at its catalytic centre and fibrin(ogen)-recognition exosite. In contrast, hirugen [hirudin-(54-65)] binds alpha-thrombin solely at the fibrin(ogen)-recognition exosite, and competitively inhibits fibrinopeptide A release. To investigate the extent to which the fibrin(ogen)-recognition exosite is involved when alpha-thrombin catalyses the amplification reactions of coagulation, we compared the abilities of hirudin, hirulog-1 and hirugen to inhibit simultaneously Factor X, Factor V and prothrombin activation. Whereas 0.1 microM-hirudin and 0.1 microM-hirulog-1 (i.e. less than 10% of the concentration of prothrombin in plasma) inhibited Factor X, Factor V and prothrombin activation, 10 microM was the minimum concentration of hirugen to achieve a similar anticoagulant action. Concentrations of hirudin and hirulog-1 equimolar to and 5 times greater than those of alpha-thrombin respectively abrogated Factor V activation by exogenous alpha-thrombin. In contrast, a 500-fold molar excess of hirugen could not. The inability of hirugen to inhibit the activation of the three clotting factors effectively suggests that the fibrin(ogen)-recognition exosite does not play a mandatory role when thrombin activates Factor V. Topics: Amino Acid Sequence; Animals; Binding Sites; Binding, Competitive; Blood Coagulation; Factor V; Factor X; Fibrinopeptide A; Hirudins; Humans; Molecular Sequence Data; Peptide Fragments; Prothrombin; Rabbits; Recombinant Proteins; Thrombin | 1992 |