hexanoylcarnitine has been researched along with butyrylcarnitine* in 3 studies
3 other study(ies) available for hexanoylcarnitine and butyrylcarnitine
Article | Year |
---|---|
Metabolic Phenotypes of Carotid Atherosclerotic Plaques Relate to Stroke Risk: An Exploratory Study.
Stroke is a major cause of death and disability. That three-quarters of stroke patients will never have previously manifested cerebrovascular symptoms demonstrates the unmet clinical need for new biomarkers able to stratify patient risk and elucidation of the biological dysregulations. In this study, the utility of comprehensive metabolic phenotyping is assessed to provide candidate biomarkers that relate to stroke risk in stenosing carotid plaque tissue samples.. Carotid plaque tissue samples were obtained from patients with cerebrovascular symptoms of carotid origin (n = 5), and from asymptomatic patients (n = 5). Two adjacent biological replicates were obtained from each tissue. Organic and aqueous metabolite extracts were obtained separately and analysed using two ultra performance liquid chromatography coupled to mass spectrometry metabolic profiling methods. Multivariate and univariate tools were used for statistical analysis.. The two study groups demonstrated distinct plaque phenotypes using multivariate data analysis. Univariate statistics also revealed metabolites that differentiated the two groups with a strong statistical significance (p = 10(-4)-10(-5)). Specifically, metabolites related to the eicosanoid pathway (arachidonic acid and arachidonic acid precursors), and three acylcarnitine species (butyrylcarnitine, hexanoylcarnitine, and palmitoylcarnitine), intermediates of the β-oxidation, were detected in higher intensities in symptomatic patients. However, metabolites implicated in the process of cell death, a process known to be upregulated in the formation of the vulnerable plaque, were unaffected.. Discrimination between symptomatic and asymptomatic carotid plaque tissue is demonstrated for the first time using metabolic profiling technologies. Two biological pathways (eicosanoid and β-oxidation) were implicated in differentiating symptomatic from asymptomatic patients and will be further investigated. These results indicate that metabolic phenotyping should be further explored to investigate the chemistry of the unstable plaque, in the pursuit of candidate biomarkers for risk-stratification and targets for pharmacotherapeutic intervention. Topics: Aged; Aged, 80 and over; Arachidonic Acid; Biomarkers; Carnitine; Carotid Stenosis; Case-Control Studies; Female; Humans; Male; Metabolomics; Middle Aged; Palmitoylcarnitine; Phenotype; Plaque, Atherosclerotic; Risk Factors; Stroke | 2016 |
Maternal and cord blood LC-HRMS metabolomics reveal alterations in energy and polyamine metabolism, and oxidative stress in very-low birth weight infants.
To assess the global effect of preterm birth on fetal metabolism and maternal-fetal nutrient transfer, we used a mass spectrometric-based chemical phenotyping approach on cord blood obtained at the time of birth. We sampled umbilical venous, umbilical arterial, and maternal blood from mothers delivering very-low birth weight (VLBW, with a median gestational age and weight of 29 weeks, and 1210 g, respectively) premature or full-term (FT) neonates. In VLBW group, we observed a significant elevation in the levels and maternal-fetal gradients of butyryl-, isovaleryl-, hexanoyl- and octanoyl-carnitines, suggesting enhanced short- and medium chain fatty acid β-oxidation in human preterm feto-placental unit. The significant decrease in glutamine-glutamate in preterm arterial cord blood beside lower levels of amino acid precursors of Krebs cycle suggest increased glutamine utilization in the fast growing tissues of preterm fetus with a deregulation in placental glutamate-glutamine shuttling. Enhanced glutathione utilization is likely to account for the decrease in precursor amino acids (serine, betaine, glutamate and methionine) in arterial cord blood. An increase in both the circulating levels and maternal-fetal gradients of several polyamines in their acetylated form (diacetylspermine and acetylputrescine) suggests an enhanced polyamine metabolic cycling in extreme prematurity. Our metabolomics study allowed the identification of alterations in fetal energy, antioxidant defense, and polyamines and purines flux as a signature of premature birth. Topics: Biogenic Polyamines; Carnitine; Female; Fetal Blood; Gestational Age; Glutamic Acid; Glutamine; Humans; Infant; Infant, Newborn; Infant, Premature; Infant, Very Low Birth Weight; Male; Maternal-Fetal Exchange; Pregnancy | 2013 |
Analysis of mitochondrial fatty acid oxidation intermediates by tandem mass spectrometry from intact mitochondria prepared from homogenates of cultured fibroblasts, skeletal muscle cells, and fresh muscle.
Defects of mitochondrial fatty acid beta-oxidation are an important group of inherited metabolic disorders in children. Despite improved screening opportunities, diagnosis of these disorders is not often straightforward and requires enzyme analyses. Because therapy is effective in many of these disorders, rapid diagnosis is essential. We report a technique that allows analysis of fatty acid oxidation not only in cultured cells (fibroblasts, myoblasts, and myotubes) but also in fresh muscle homogenate. Fatty acid oxidation analysis was performed by incubating fresh muscle homogenate or harvested cultured cells with stable isotopically labeled palmitate. The intermediates generated were analyzed by tandem mass spectrometry. Results of patients with seven different beta-oxidation disorders were compared with controls. Acylcarnitine intermediates in patient samples could be easily differentiated from the control samples. The acylcarnitine profile of each beta-oxidation defect was compatible with localization of the enzyme defect. Both in patient and control samples, the same pattern of intermediates could be detected in fibroblasts, muscle cells, and fresh muscle homogenate. The procedure described allowed correct diagnosis of all the beta-oxidation defects studied. Utilization of fresh muscle samples reduces the delay in diagnosis related to tissue culture and is useful in diagnostic of patients with neuromuscular phenotype. Measurement of fatty acid oxidation intermediates from myoblasts or myotubes is an additional tool in investigating pathogenetic mechanisms of myopathy in beta-oxidation defects. Topics: 3-Hydroxyacyl CoA Dehydrogenases; Acetylcarnitine; Acyl-CoA Dehydrogenase; Carnitine; Carnitine O-Palmitoyltransferase; Cells, Cultured; Fatty Acid Desaturases; Fatty Acids; Fibroblasts; Humans; Mass Spectrometry; Metabolic Diseases; Mitochondria; Muscle, Skeletal; Myoblasts; Oxidation-Reduction; Skin | 2002 |