hexanitrohexaazaisowurzitane and cyclonite

hexanitrohexaazaisowurzitane has been researched along with cyclonite* in 2 studies

Other Studies

2 other study(ies) available for hexanitrohexaazaisowurzitane and cyclonite

ArticleYear
Alkaline hydrolysis of the cyclic nitramine explosives RDX, HMX, and CL-20: new insights into degradation pathways obtained by the observation of novel intermediates.
    Environmental science & technology, 2003, May-01, Volume: 37, Issue:9

    Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX, I) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) hydrolyze at pH > 10 to form end products including NO2-, HCHO, HCOOH, NH3, and N2O, but little information is available on intermediates, apart from the tentatively identified pentahydro-3,5-dinitro-1,3,5-triazacyclohex-1-ene (II). Despite suggestions that RDX and HMX contaminated groundwater could be economically treated via alkaline hydrolysis, the optimization of such a process requires more detailed knowledge of intermediates and degradation pathways. In this study, we hydrolyzed the monocyclic nitramines RDX, MNX (hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine), and HMX in aqueous solution (pH 10-12.3) and found that nitramine removal was accompanied by formation of 1 molar equiv of nitrite and the accumulation of the key ring cleavage product 4-nitro-2,4-diazabutanal (4-NDAB, O2NNHCH2NHCHO). Most of the remaining C and N content of RDX, MNX, and HMX was found in HCHO, N2O, HCOOH, and NH3. Consequently, we selected RDX as a model compound and hydrolyzed it in aqueous acetonitrile solutions (pH 12.3) in the presence and absence of hydroxypropyl-beta-cyclodextrin (HP-beta-CD) to explore other early intermediates in more detail. We observed a transient LC-MS peak with a [M-H] at 192 Da that was tentatively identified as 4,6-dinitro-2,4,6-triaza-hexanal (O2NNHCH2NNO2CH2NHCHO, III) considered as the hydrolyzed product of II. In addition, we detected another novel intermediate with a [M-H] at 148 Da that was tentatively identified as a hydrolyzed product of III, namely, 5-hydroxy-4-nitro-2,4-diaza-pentanal (HOCH2NNO2CH2NHCHO, IV). Both III and IV can act as precursors to 4-NDAB. In the case of the polycyclic nitramine 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20), denitration (two NO2-) also led to the formation of HCOOH, NH3, and N2O, but neither HCHO nor 4-NDAB were detected. The results provide strong evidence that initial denitration of cyclic nitramines in water is sufficient to cause ring cleavage followed by spontaneous decomposition to form the final products.

    Topics: Azocines; Bridged-Ring Compounds; Environmental Pollutants; Heterocyclic Compounds, 1-Ring; Hydrogen-Ion Concentration; Hydrolysis; Nitro Compounds; Triazines

2003
Spin trapping of nitrogen dioxide radical from photolytic decomposition of nitramines.
    Free radical biology & medicine, 1993, Volume: 15, Issue:3

    The photochemical (lambda < 400 nm) decomposition of some monocyclic and polycyclic nitramines produces .NO2, which can be detected in the respective nitramine crystals at 77 K by EPR (electron paramagnetic resonance). In solutions of perdeutero-dimethylsulfoxide (DMSO-d6) the .NO2 produced by photolytic decomposition of dissolved nitramines can be spintrapped by the solvent to give a radical having the structure CD3-(SO2)-(NO.)-CD3. In this article, we examine this reaction for two nitramines: cyclotrimethylenetrinitramine (RDX) and hexanitrohexaazaisowurzitane (HNIW), which are energetic materials. The decay of the spin-adduct radical (I) follows first-order kinetics for both nitramines studied, having a rate constant (k) of congruent to 7.1 x 10(-4) s-1. The net growth in spin concentration of (1) measured from EPR spectra is fitted by a first-order rate equation taking into account the simultaneous competitive decay rate of spin adduct (I). Using the rate data and EPR spin concentration data, the ratio of free .NO2 produced per parent nitramine molecule is estimated as 1:1 for RDX and 4:1 for HNIW. Biological implications of trapping of .NO2 by dimethyl sulfoxide are discussed.

    Topics: Bridged-Ring Compounds; Deuterium; Dimethyl Sulfoxide; Electron Spin Resonance Spectroscopy; Free Radicals; Kinetics; Nitro Compounds; Nitrogen Dioxide; Photolysis; Solutions; Triazines

1993