hexahydrocurcumin has been researched along with tetrahydrocurcumin* in 5 studies
5 other study(ies) available for hexahydrocurcumin and tetrahydrocurcumin
Article | Year |
---|---|
Pharmacokinetics-Driven Evaluation of the Antioxidant Activity of Curcuminoids and Their Major Reduced Metabolites-A Medicinal Chemistry Approach.
Curcuminoids are the main bioactive components of the well-known Asian spice and traditional medicine turmeric. Curcuminoids have poor chemical stability and bioavailability; in vivo they are rapidly metabolized to a set of bioreduced derivatives and/or glucuronide and sulfate conjugates. The reduced curcuminoid metabolites were also reported to exert various bioactivities in vitro and in vivo. In this work, we aimed to perform a comparative evaluation of curcuminoids and their hydrogenated metabolites from a medicinal chemistry point of view, by determining a set of key pharmacokinetic parameters and evaluating antioxidant potential in relation to such properties.Reduced metabolites were prepared from curcumin and demethoxycurcumin through continuous-flow hydrogenation. As selected pharmacokinetic parameters, kinetic solubility, chemical stability, metabolic stability in human liver microsomes, and parallel artificial membrane permeability assay (PAMPA)-based gastrointestinal and blood-brain barrier permeability were determined. Experimentally determined logP for hydrocurcumins in octanol-water and toluene-water systems provided valuable data on the tendency for intramolecular hydrogen bonding by these compounds. Drug likeness of the compounds were further evaluated by a in silico calculations. Antioxidant properties in diphenyl-2-picrylhydrazyl (DPPH) radical scavenging and oxygen radical absorbance capacity (ORAC) assays were comparatively evaluated through the determination of ligand lipophilic efficiency (LLE). Our results showed dramatically increased water solubility and chemical stability for the reduced metabolites as compared to their corresponding parent compound. Hexahydrocurcumin was found the best candidate for drug development based on a complex pharmacokinetical comparison and high LLE values for its antioxidant properties. Development of tetrahydrocurcumin and tetrahydro-demethoxycurcumin would be limited by their very poor metabolic stability, therefore such an effort would rely on formulations bypassing first-pass metabolism. Topics: Antioxidants; Biological Availability; Biphenyl Compounds; Cell Membrane Permeability; Chemistry, Pharmaceutical; Curcuma; Curcumin; Diarylheptanoids; Glucuronides; Humans; Hydrogenation; Microsomes, Liver; Picrates; Solubility | 2021 |
Structural Interactions of Curcumin Biotransformed Molecules with the N-Terminal Residues of Cytotoxic-Associated Gene A Protein Provide Insights into Suppression of Oncogenic Activities.
Curcumin as a natural product has drawn considerable attention in recent years for its multiple pharmacological activities against various diseases, but more studies are required to understand the curcumin pharmacological action considering its low bioavailability. Though numerous reasons contribute to the low bioavailability of curcumin, one of the important reasons is associated with biotransformation of curcumin through either conjugation or reduction depending on curcumin administration route. The orally administered curcumin (CUR) is metabolised into curcumin glucuronidase (CUR-GLR) and curcumin sulphate by conjugation, whereas dihydroxycurcumin, tetrahydrocurcumin, and hexahydrocurcumin (HHC) are formed by reduction after intraperitoneal administration of curcumin. The main aim of the current study was to investigate the pharmacological properties of curcumin and its biotransformed molecules and its inhibitory potential against CagA (cytotoxic-associated gene A) oncoprotein of Helicobacter pylori. All lead molecules followed the Lipinski's five rules for biological activities, except CUR-GLR, whereas druglikeness scores were obtained for all molecules. Subsequently, molecular docking was employed to analyse the binding affinity of molecules with CagA. The docking studies revealed that CUR-GLR has highest binding affinity with CagA, whereas less interactive affinity was observed in HHC. From the virtual screening and docking studies, the current study suggests that the biotransformation of curcumin through conjugation has more potential for inhibition of oncogenic activities of CagA+ H. pylori than reduction. Topics: Biotransformation; Curcumin; Helicobacter pylori; Molecular Docking Simulation | 2017 |
Curcumin and its major metabolites inhibit the inflammatory response induced by lipopolysaccharide: translocation of nuclear factor-κB as potential target.
The aim of the present study was to investigate and compare the anti‑inflammatory activities of curcumin and its three metabolites, tetrahydrocurcumin, hexahydrocurcumin and octahydrocurcumin in lipopolysaccharide (LPS)‑stimulated RAW 264.7 macrophage cells. The results demonstrated that overproduction of nitric oxide (NO) was potently inhibited following treatment with curcumin and its three metabolites. In addition, curcumin and tetrahydrocurcumin significantly inhibited the release of prominent cytokines, including tumor necrosis factor‑α (TNF‑α) and interleukin‑6 (IL‑6); however, hexahydrocurcumin and octahydrocurcumin did not significantly alter cytokine release. Furthermore, the present study investigated the effect of curcumin and its metabolites on the expression of inducible NO synthase (iNOS), cyclooxygenase‑2 (COX‑2) and activated‑nuclear factor kappa B (NF‑κB); the results showed that curcumin and its three metabolites significantly inhibited LPS‑mediated upregulation of iNOS and COX‑2 as well as NF‑κB activation. However, curcumin exerted a more potent effect on LPS‑stimulated RAW 264.7 cells compared to that of its three metabolites, of which tetrahydrocurcuim was found to be the most pharmacologically active. In conclusion, the results of the present study demonstrated that curcumin and its major metabolites inhibited the LPS‑induced inflammatory response via the mechanism of inhibiting NF‑κB translocation to the nucleus. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Cell Line; Cell Survival; Curcumin; Cyclooxygenase 2; Cytokines; Lipopolysaccharides; Macrophages; Male; Mice; NF-kappa B; Nitric Oxide; Nitric Oxide Synthase Type II; Protein Transport; Proteolysis; Rats | 2015 |
Differential cellular uptake and metabolism of curcuminoids in monocytes/macrophages: regulatory effects on lipid accumulation.
We have previously shown that curcumin (CUR) may increase lipid accumulation in cultured human acute monocytic leukaemia cell line THP-1 monocytes/macrophages, but that tetrahydrocurcumin (THC), an in vivo metabolite of CUR, has no such effect. In the present study, we hypothesised that the different cellular uptake and/or metabolism of CUR and THC might be a possible explanation for the previously observed differences in their effects on lipid accumulation in THP-1 monocytes/macrophages. Chromatography with tandem MS revealed that CUR was readily taken up by THP-1 monocytes/macrophages and slowly metabolised to hexahydrocurcumin sulphate. By contrast, the uptake of THC was low. In parallel with CUR uptake, increased lipid uptake was observed in THP-1 macrophages but not with the uptake of THC or another CUR metabolite and structurally related compounds. From these results, it is possible to deduce that CUR and THC are taken up and metabolised differently in THP-1 cells, which determine their biological activity. The remarkable differential cellular uptake of CUR, relative to THC and other similar molecules, may imply that the CUR uptake into cells may occur via a transporter. Topics: Biological Transport; Carcinogens; Cell Differentiation; Cell Line; Chromatography, High Pressure Liquid; Curcumin; Diarylheptanoids; Glucuronides; Humans; Kinetics; Lipid Metabolism; Macrophages; Monocytes; Sulfates; Tandem Mass Spectrometry; Tetradecanoylphorbol Acetate | 2014 |
Curcumin is a potent DNA hypomethylation agent.
Molecular docking of the interaction of curcumin and DNMT1 suggested that curcumin covalently blocks the catalytic thiolate of C1226 of DNMT1 to exert its inhibitory effect. This was validated by showing that curcumin inhibits the activity of M. SssI with an IC(50) of 30 nM, but no inhibitory activity of hexahydrocurcumin up to 100 microM. In addition, curcumin can induce global DNA hypomethylation in a leukemia cell line. Topics: Catalysis; Catalytic Domain; Cell Line, Tumor; Curcumin; Cytosine; DNA (Cytosine-5-)-Methyltransferase 1; DNA (Cytosine-5-)-Methyltransferases; DNA Methylation; Dose-Response Relationship, Drug; Drug Design; Humans; Inhibitory Concentration 50; Leukemia; Models, Chemical; Molecular Conformation | 2009 |