hexahydro-1-nitroso-3-5-dinitro-1-3-5-triazine and trinitrosotrimethylenetriamine

hexahydro-1-nitroso-3-5-dinitro-1-3-5-triazine has been researched along with trinitrosotrimethylenetriamine* in 3 studies

Other Studies

3 other study(ies) available for hexahydro-1-nitroso-3-5-dinitro-1-3-5-triazine and trinitrosotrimethylenetriamine

ArticleYear
Biodegradation of RDX nitroso products MNX and TNX by cytochrome P450 XplA.
    Environmental science & technology, 2012, Jul-03, Volume: 46, Issue:13

    Anaerobic transformation of the explosive RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) by microorganisms involves sequential reduction of N-NO(2) to the corresponding N-NO groups resulting in the initial formation of MNX (hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine). MNX is further reduced to the dinitroso (DNX) and trinitroso (TNX) derivatives. In this paper, we describe the degradation of MNX and TNX by the unusual cytochrome P450 XplA that mediates metabolism of RDX in Rhodococcus rhodochrous strain 11Y. XplA is known to degrade RDX under aerobic and anaerobic conditions, and, in the present study, was found able to degrade MNX to give similar products distribution including NO(2)(-), NO(3)(-), N(2)O, and HCHO but with varying stoichiometric ratio, that is, 2.06, 0.33, 0.33, 1.18, and 1.52, 0.15, 1.04, 2.06, respectively. In addition, the ring cleavage product 4-nitro-2,4,-diazabutanal (NDAB) and a trace amount of another intermediate with a [M-H](-) at 102 Da, identified as ONNHCH(2)NHCHO (NO-NDAB), were detected mostly under aerobic conditions. Interestingly, degradation of TNX was observed only under anaerobic conditions in the presence of RDX and/or MNX. When we incubated RDX and its nitroso derivatives with XplA, we found that successive replacement of N-NO(2) by N-NO slowed the removal rate of the chemicals with degradation rates in the order RDX > MNX > DNX, suggesting that denitration was mainly responsible for initiating cyclic nitroamines degradation by XplA. This study revealed that XplA preferentially cleaved the N-NO(2) over the N-NO linkages, but could nevertheless degrade all three nitroso derivatives, demonstrating the potential for complete RDX removal in explosives-contaminated sites.

    Topics: Biodegradation, Environmental; Cytochrome P-450 Enzyme System; Explosive Agents; Nitrosamines; Rhodococcus; Triazines

2012
Uptake, bioaccumulation, and biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and its reduced metabolites (MNX and TNX) by the earthworm (Eisenia fetida).
    Chemosphere, 2009, Volume: 76, Issue:1

    Uptake and accumulation kinetics of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and its two major N-nitroso metabolites, hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX) and hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX), in earthworms was investigated. Results indicated that RDX and its N-nitroso metabolites were rapidly absorbed into earthworms (Eisenia fetida), reaching the highest concentrations within a few days. Accumulation of RDX was greater than its N-nitroso metabolites, as evidenced by a higher bioconcentration factor (BCF); BCFs were 1.86, 0.39, and 0.05 for RDX, MNX, and TNX, respectively. RDX and its N-nitroso metabolites were also rapidly eliminated from the earthworm and/or transformed to other metabolites, as evidenced by the rapid decrease of test compounds in earthworms after reaching their highest concentrations. The uptake of MNX and TNX increased as exposure concentration increased. Although these earthworms might (anaerobically) degrade RDX to MNX and MNX to TNX, it is hypothesized that this process would be slow. Other biotransformation pathways may be involved in biodegradation of RDX and its N-nitroso metabolites due to the fact that concentrations of tested compounds decreased in both soil and earthworms. It is hoped that these data can be used to refine environmental management strategies for RDX and for performing specific risk assessments of RDX and its N-nitroso metabolites.

    Topics: Animals; Biodegradation, Environmental; Biotransformation; Explosive Agents; Nitrosamines; Oligochaeta; Soil Pollutants; Time Factors; Triazines

2009
Toxicity of the explosive metabolites hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX) and hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX) to the earthworm Eisenia fetida.
    Chemosphere, 2006, Volume: 64, Issue:1

    Toxicity of hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX) and hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX) to earthworm was evaluated. Both MNX and TNX had lethal and sublethal effects on earthworms. Exposure to MNX- or TNX-contaminated soil caused a significant concentration-dependent decrease in earthworm survival and growth. The lowest observed lethal concentration (LOLC) for both MNX and TNX was 100 and 200 mgkg(-1) soil dry weight in the sandy loam soil and in the silt loam soil, respectively. No earthworms survived for 14 days in MNX- or TNX-spiked soil at 500 mgkg(-1) soil dry weight. After 7 days exposure, the lowest observed effect concentration (LOEC) for earthworm growth was 50 mgkg(-1) soil dry weight for TNX and 100 mgkg(-1) soil dry weight for MNX in both soil types. The LC20 and LC50 for MNX in sandy loam soil were 114 and 262 mgkg(-1) and for TNX, they were 114 and 254 mgkg(-1) soil dry weight, respectively. The corresponding values for MNX and TNX in silt loam soil were 234 and 390 mgkg(-1) soil dry weight, respectively, and 200 and 362 mgkg(-1) soil dry weight, respectively. After 35 days exposure, earthworm growth was reduced 8-39% by TNX in sandy loam soil, whereas TNX only inhibited earthworm growth 5-18% at the same concentration range in silt loam soil. LC20 and LC50 for TNX were slightly lower than for MNX; this indicates that TNX was more toxic than MNX. No significant morphological or developmental abnormalities were observed in earthworms surviving exposure.

    Topics: Animals; Lethal Dose 50; Nitrosamines; No-Observed-Adverse-Effect Level; Oligochaeta; Soil Pollutants; Triazines

2006