hesperetin and galangin

hesperetin has been researched along with galangin in 12 studies

Research

Studies (12)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's4 (33.33)18.2507
2000's1 (8.33)29.6817
2010's6 (50.00)24.3611
2020's1 (8.33)2.80

Authors

AuthorsStudies
Augereau, JM; Billon, M; Gleye, J; Herbert, JM; Lale, A; Leconte, M1
Habtemariam, S1
Ash, K; Grohmann, K; Manthey, CL; Manthey, JA; Montanari, A1
Domina, NG; Khlebnikov, AI; Kirpotina, LN; Quinn, MT; Schepetkin, IA1
Amić, D; Lucić, B1
Itoh, T; Sakakibara, H; Shimoi, K; Takemura, H; Yamamoto, K1
Cai, S; Chu, L; Gao, F; Ji, B; Jia, G; Liu, J; Liu, Y; Wang, A; Wei, Y; Wu, W; Xie, L; Zhang, D; Zhou, F1
Batista-Gonzalez, A; Brunhofer, G; Fallarero, A; Gopi Mohan, C; Karlsson, D; Shinde, P; Vuorela, P1
Bilia, AR; Carta, F; Ceruso, M; Karioti, A; Supuran, CT1
Bicknell, KA; Farrimond, JA; Putnam, SE; Swioklo, S; Watson, KA; Williamson, EM1
Carroll, KK; Chambers, AF; Guthrie, N; Moussa, M; So, FV1
Belduz, AO; Guler, HI; Kolayli, S; Tatar, G; Yildiz, O1

Other Studies

12 other study(ies) available for hesperetin and galangin

ArticleYear
Ability of different flavonoids to inhibit the procoagulant activity of adherent human monocytes.
    Journal of natural products, 1996, Volume: 59, Issue:3

    Topics: Amino Acid Sequence; Blood Coagulation; Cell Adhesion; Endotoxins; Flavonoids; Humans; In Vitro Techniques; Interleukin-1; Molecular Sequence Data; Monocytes

1996
Flavonoids as inhibitors or enhancers of the cytotoxicity of tumor necrosis factor-alpha in L-929 tumor cells.
    Journal of natural products, 1997, Volume: 60, Issue:8

    Topics: Animals; Apoptosis; Drug Synergism; Flavonoids; Mice; Tumor Cells, Cultured; Tumor Necrosis Factor-alpha

1997
Polymethoxylated flavones derived from citrus suppress tumor necrosis factor-alpha expression by human monocytes.
    Journal of natural products, 1999, Volume: 62, Issue:3

    Topics: Citrus; Cyclic AMP; Flavonoids; Humans; In Vitro Techniques; Lipopolysaccharides; Monocytes; Phosphodiesterase Inhibitors; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Tumor Necrosis Factor-alpha

1999
Improved quantitative structure-activity relationship models to predict antioxidant activity of flavonoids in chemical, enzymatic, and cellular systems.
    Bioorganic & medicinal chemistry, 2007, Feb-15, Volume: 15, Issue:4

    Topics: Animals; Antioxidants; Drug Design; Flavonoids; Humans; Phagocytes; Phenols; Polyphenols; Quantitative Structure-Activity Relationship

2007
Reliability of bond dissociation enthalpy calculated by the PM6 method and experimental TEAC values in antiradical QSAR of flavonoids.
    Bioorganic & medicinal chemistry, 2010, Jan-01, Volume: 18, Issue:1

    Topics: Flavonoids; Free Radical Scavengers; Models, Biological; Quantitative Structure-Activity Relationship; Quantum Theory; Software; Thermodynamics

2010
Selective inhibition of methoxyflavonoids on human CYP1B1 activity.
    Bioorganic & medicinal chemistry, 2010, Sep-01, Volume: 18, Issue:17

    Topics: Aryl Hydrocarbon Hydroxylases; Cytochrome P-450 CYP1A1; Cytochrome P-450 CYP1A2; Cytochrome P-450 CYP1A2 Inhibitors; Cytochrome P-450 CYP1B1; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Flavonoids; Humans; Models, Molecular; Structure-Activity Relationship

2010
Comparative study on antioxidant capacity of flavonoids and their inhibitory effects on oleic acid-induced hepatic steatosis in vitro.
    European journal of medicinal chemistry, 2011, Volume: 46, Issue:9

    Topics: Antioxidants; Cell Line; Fatty Liver; Flavonoids; Humans; In Vitro Techniques; Oleic Acid; Reactive Oxygen Species; Triglycerides

2011
Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
    Bioorganic & medicinal chemistry, 2012, Nov-15, Volume: 20, Issue:22

    Topics: Acetylcholinesterase; Amyloid beta-Peptides; Benzophenanthridines; Binding Sites; Butyrylcholinesterase; Catalytic Domain; Cholinesterase Inhibitors; Humans; Isoquinolines; Kinetics; Molecular Docking Simulation; Structure-Activity Relationship

2012
New natural product carbonic anhydrase inhibitors incorporating phenol moieties.
    Bioorganic & medicinal chemistry, 2015, Nov-15, Volume: 23, Issue:22

    Topics: Biological Products; Carbonic Anhydrase Inhibitors; Carbonic Anhydrases; Humans; Isoenzymes; Kinetics; Phenol; Protein Binding; Quercus; Salvia; Structure-Activity Relationship

2015
Defining Key Structural Determinants for the Pro-osteogenic Activity of Flavonoids.
    Journal of natural products, 2015, Nov-25, Volume: 78, Issue:11

    Topics: Cell Differentiation; Flavonoids; Humans; Mesenchymal Stem Cells; Molecular Structure; Osteogenesis; Signal Transduction; Structure-Activity Relationship

2015
Inhibition of human breast cancer cell proliferation and delay of mammary tumorigenesis by flavonoids and citrus juices.
    Nutrition and cancer, 1996, Volume: 26, Issue:2

    Topics: 9,10-Dimethyl-1,2-benzanthracene; Animals; Antineoplastic Agents; Beverages; Breast Neoplasms; Cell Division; Citrus; Female; Flavanones; Flavonoids; Genistein; Hesperidin; Humans; Isoflavones; Mammary Neoplasms, Experimental; Quercetin; Rats; Rats, Sprague-Dawley; Tumor Cells, Cultured

1996
Investigation of potential inhibitor properties of ethanolic propolis extracts against ACE-II receptors for COVID-19 treatment by molecular docking study.
    Archives of microbiology, 2021, Volume: 203, Issue:6

    Topics: Angiotensin-Converting Enzyme 2; Animals; Bees; Caffeic Acids; COVID-19 Drug Treatment; Flavanones; Flavonoids; Hesperidin; Humans; Luteolin; Molecular Docking Simulation; Phenylethyl Alcohol; Plant Extracts; Propolis; Quercetin; Rutin

2021