hesperetin has been researched along with biochanin a in 9 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 3 (33.33) | 29.6817 |
2010's | 5 (55.56) | 24.3611 |
2020's | 1 (11.11) | 2.80 |
Authors | Studies |
---|---|
Morris, ME; Yang, X; Zhang, S | 1 |
Domina, NG; Khlebnikov, AI; Kirpotina, LN; Quinn, MT; Schepetkin, IA | 1 |
Kirchmair, J; Laggner, C; Langer, T; Nashev, LG; Odermatt, A; Schuster, D; Wolber, G | 1 |
Amić, D; Lucić, B | 1 |
Batista-Gonzalez, A; Brunhofer, G; Fallarero, A; Gopi Mohan, C; Karlsson, D; Shinde, P; Vuorela, P | 1 |
Bilia, AR; Carta, F; Ceruso, M; Karioti, A; Supuran, CT | 1 |
Cahlikova, L; Chlebek, J; Havrankova, J; Hofman, J; Hostalkova, A; Lundova, T; Musilek, K; Novotna, E; Wsol, V; Zemanova, L | 1 |
Akram, M; Atanasov, AG; Ateba, SB; Bachmann, F; Davis, RA; Engeli, RT; Krenn, L; Leugger, S; Njamen, D; Odermatt, A; Schuster, D; Stuppner, H; Temml, V; Vuorinen, A; Waltenberger, B | 1 |
Fong, J; Korobkova, EA; Maran, U; Oja, M; Rice, M; Samuels, K; Sapse, AM; Williams, AK; Wong, B | 1 |
9 other study(ies) available for hesperetin and biochanin a
Article | Year |
---|---|
Flavonoids are inhibitors of breast cancer resistance protein (ABCG2)-mediated transport.
Topics: Antineoplastic Agents; ATP Binding Cassette Transporter, Subfamily B, Member 1; ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Transporters; Biological Transport; Cell Division; Chemokines, CC; Dose-Response Relationship, Drug; Drug Interactions; Flavonoids; Humans; Mitoxantrone; Neoplasm Proteins; Tumor Cells, Cultured | 2004 |
Improved quantitative structure-activity relationship models to predict antioxidant activity of flavonoids in chemical, enzymatic, and cellular systems.
Topics: Animals; Antioxidants; Drug Design; Flavonoids; Humans; Phagocytes; Phenols; Polyphenols; Quantitative Structure-Activity Relationship | 2007 |
Discovery of nonsteroidal 17beta-hydroxysteroid dehydrogenase 1 inhibitors by pharmacophore-based screening of virtual compound libraries.
Topics: 17-Hydroxysteroid Dehydrogenases; Catalysis; Cell Line; Drug Evaluation, Preclinical; Enzyme Inhibitors; Flavonoids; Humans; Models, Chemical; Small Molecule Libraries | 2008 |
Reliability of bond dissociation enthalpy calculated by the PM6 method and experimental TEAC values in antiradical QSAR of flavonoids.
Topics: Flavonoids; Free Radical Scavengers; Models, Biological; Quantitative Structure-Activity Relationship; Quantum Theory; Software; Thermodynamics | 2010 |
Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
Topics: Acetylcholinesterase; Amyloid beta-Peptides; Benzophenanthridines; Binding Sites; Butyrylcholinesterase; Catalytic Domain; Cholinesterase Inhibitors; Humans; Isoquinolines; Kinetics; Molecular Docking Simulation; Structure-Activity Relationship | 2012 |
New natural product carbonic anhydrase inhibitors incorporating phenol moieties.
Topics: Biological Products; Carbonic Anhydrase Inhibitors; Carbonic Anhydrases; Humans; Isoenzymes; Kinetics; Phenol; Protein Binding; Quercus; Salvia; Structure-Activity Relationship | 2015 |
Flavones Inhibit the Activity of AKR1B10, a Promising Therapeutic Target for Cancer Treatment.
Topics: Aldehyde Reductase; Aldo-Keto Reductases; Apigenin; Daunorubicin; Enzyme Inhibitors; Flavones; Flavonoids; HCT116 Cells; Humans; Luteolin; Molecular Conformation; Molecular Structure; Neoplasms | 2015 |
Potential Antiosteoporotic Natural Product Lead Compounds That Inhibit 17β-Hydroxysteroid Dehydrogenase Type 2.
Topics: 17-Hydroxysteroid Dehydrogenases; Biological Products; Enzyme Inhibitors; Etiocholanolone; Humans; Models, Molecular; Molecular Structure; Structure-Activity Relationship; Testosterone | 2017 |
A role of flavonoids in cytochrome c-cardiolipin interactions.
Topics: Cardiolipins; Cytochromes c; Dose-Response Relationship, Drug; Enzyme Inhibitors; Flavonoids; Humans; Molecular Structure; Oxidation-Reduction; Structure-Activity Relationship | 2021 |