hes1-protein--human and honokiol

hes1-protein--human has been researched along with honokiol* in 2 studies

Other Studies

2 other study(ies) available for hes1-protein--human and honokiol

ArticleYear
Honokiol inhibits melanoma stem cells by targeting notch signaling.
    Molecular carcinogenesis, 2015, Volume: 54, Issue:12

    Melanoma is an aggressive disease with limited therapeutic options. Here, we determined the effects of honokiol (HNK), a biphenolic natural compound on melanoma cells and stemness. HNK significantly inhibited melanoma cell proliferation, viability, clonogenicity and induced autophagy. In addition, HNK significantly inhibited melanosphere formation in a dose dependent manner. Western blot analyses also demonstrated reduction in stem cell markers CD271, CD166, Jarid1b, and ABCB5. We next examined the effect of HNK on Notch signaling, a pathway involved in stem cell self-renewal. Four different Notch receptors exist in cells, which when cleaved by a series of enzymatic reactions catalyzed by Tumor Necrosis Factor-α-Converting Enzyme (TACE) and γ-secretase protein complex, results in the release of the Notch intracellular domain (NICD), which then translocates to the nucleus and induces target gene expression. Western blot analyses demonstrated that in HNK treated cells there is a significant reduction in the expression of cleaved Notch-2. In addition, there was a reduction in the expression of downstream target proteins, Hes-1 and cyclin D1. Moreover, HNK treatment suppressed the expression of TACE and γ-secretase complex proteins in melanoma cells. To confirm that suppression of Notch-2 activation is critical for HNK activity, we overexpressed NICD1, NICD2, and performed HNK treatment. NICD2, but not NICD1, partially restored the expression of Hes-1 and cyclin D1, and increased melanosphere formation. Taken together, these data suggest that HNK is a potent inhibitor of melanoma cells, in part, through the targeting of melanoma stem cells by suppressing Notch-2 signaling.

    Topics: ADAM Proteins; ADAM17 Protein; Amyloid Precursor Protein Secretases; Autophagy; Basic Helix-Loop-Helix Transcription Factors; Biomarkers, Tumor; Biphenyl Compounds; Cell Line, Tumor; Cell Proliferation; Cell Survival; Cyclin D1; Homeodomain Proteins; Humans; Lignans; Melanoma; Neoplastic Stem Cells; Receptor, Notch2; Receptors, Notch; Signal Transduction; Transcription Factor HES-1

2015
Elimination of cancer stem-like cells and potentiation of temozolomide sensitivity by Honokiol in glioblastoma multiforme cells.
    PloS one, 2015, Volume: 10, Issue:3

    Glioblastoma multiforme (GBM) is the most common adult malignant glioma with poor prognosis due to the resistance to radiotherapy and chemotherapy, which might be critically involved in the repopulation of cancer stem cells (CSCs) after treatment. We had investigated the characteristics of cancer stem-like side population (SP) cells sorted from GBM cells, and studied the effect of Honokiol targeting on CSCs. GBM8401 SP cells possessed the stem cell markers, such as nestin, CD133 and Oct4, and the expressions of self-renewal related stemness genes, such as SMO, Notch3 and IHH (Indian Hedgehog). Honokiol inhibited the proliferation of both GBM8401 parental cells and SP cells in a dose-dependent manner, the IC50 were 5.3±0.72 and 11±1.1 μM, respectively. The proportions of SP in GBM8401 cells were diminished by Honokiol from 1.5±0.22% down to 0.3±0.02% and 0.2±0.01% at doses of 2.5 μM and 5 μM, respectively. The SP cells appeared to have higher expression of O6-methylguanine-DNA methyltransferase (MGMT) and be more resistant to Temozolomide (TMZ). The resistance to TMZ could be only slightly reversed by MGMT inhibitor O6-benzylguanine (O6-BG), but markedly further enhanced by Honokiol addition. Such significant enhancement was accompanied with the higher induction of apoptosis, greater down-regulation of Notch3 as well as its downstream Hes1 expressions in SP cells. Our data indicate that Honokiol might have clinical benefits for the GBM patients who are refractory to TMZ treatment.

    Topics: Antineoplastic Agents; Apoptosis; Basic Helix-Loop-Helix Transcription Factors; Biphenyl Compounds; Brain Neoplasms; Cell Proliferation; Dacarbazine; Dose-Response Relationship, Drug; Down-Regulation; Drug Synergism; Drug Therapy, Combination; Glioblastoma; Homeodomain Proteins; Humans; Lignans; Neoplastic Stem Cells; Receptor, Notch3; Receptors, Notch; Temozolomide; Transcription Factor HES-1; Tumor Cells, Cultured

2015