heroin and naltrindole-benzofuran

heroin has been researched along with naltrindole-benzofuran* in 2 studies

Other Studies

2 other study(ies) available for heroin and naltrindole-benzofuran

ArticleYear
Heroin antinociception changed from mu to delta receptor in streptozotocin-treated mice.
    Japanese journal of pharmacology, 1998, Volume: 78, Issue:4

    CD-1 mice were treated intravenously with streptozotocin, 200 mg/kg, and tested 2 weeks later or treated with 60 mg/kg and tested 3 days later. Both treatments changed the tail flick response of heroin and 6-monoacetylmorphine (6 MAM) given intracerebroventricularly from a mu- to delta-opioid receptor-mediated action as determined by differential effects of opioid receptor antagonists. The response to morphine remained mu. Heroin and 6 MAM responses involved delta1 (inhibited by 7-benzylidenenaltrexone) and delta2 (inhibited by naltriben) receptors, respectively. These delta-agonist actions did not synergize with the mu-agonist action of morphine in the diabetic mice. The expected synergism between the delta agonist, [D-Pen2-D-Pen5]enkephalin (DPDPE), and morphine was not obtained in diabetic mice. Thus, diabetes disrupted the purported mu/delta-coupled response. In nondiabetic CD-1 mice, heroin and 6 MAM produced a different mu-receptor response (not inhibited by naloxonazine) from that of morphine (inhibited by naloxonazine). Also, these mu actions, unlike that of morphine, did not synergize with DPDPE. The unique receptor actions and changes produced by streptozotocin suggest that extrinsic in addition to genetic factors influence the opioid receptor selectivity of heroin and 6 MAM.

    Topics: Analgesics, Opioid; Animals; Anti-Bacterial Agents; Benzylidene Compounds; Diabetes Mellitus, Experimental; Dose-Response Relationship, Drug; Drug Interactions; Enkephalin, D-Penicillamine (2,5)-; Enkephalins; Heroin; Injections, Intraventricular; Male; Mice; Morphine; Morphine Derivatives; Naloxone; Naltrexone; Narcotic Antagonists; Nociceptors; Pain; Receptors, Opioid, delta; Receptors, Opioid, mu; Streptozocin; Time Factors

1998
Supraspinal delta receptor subtype activity of heroin and 6-monoacetylmorphine in Swiss Webster mice.
    Life sciences, 1994, Volume: 55, Issue:8

    The purpose of this study was to determine which delta (delta) opioid receptor subtype, delta 1 or delta 2, was involved in producing the antinociceptive action of heroin and 6-monacetylmorphine (MAM) in Swiss Webster mice. Previous work from this laboratory established that heroin and MAM, given intracerebroventricularly (i.c.v.) in Swiss Webster mice, produce antinociception through activation of supraspinal delta receptors. Naltrindole, but not naloxone or nor-binaltorphimine, antagonizes the inhibitory action of heroin and MAM in the tail-flick test. Recent literature documents the occurrence of subtypes of the delta opioid receptor and the availability of selective antagonists. 7-Benzylidenenaltrexone (BNTX) antagonizes the antinociception induced by delta 1 receptor agonists without affecting that induced by delta 2 receptor agonists. Naltriben (NTB) selectively inhibits delta 2- but not delta 1-induced antinociception. In the present study BNTX and NTB were administered i.c.v. with heroin and MAM to determine the delta receptor subtype responsible for inhibition of the tail-flick response in Swiss Webster mice. The ED50 for heroin-induced antinociception was increased 19-fold by BNTX and was not altered by NTB administration. On the other hand, the ED50 value of MAM was increased 3-fold by NTB and was not altered by BNTX administration. These results suggest that heroin activated supraspinal delta 1 receptors and MAM acted on supraspinal delta 2 receptors to produce antinociception in Swiss Webster mice.

    Topics: Animals; Benzylidene Compounds; Heroin; Male; Mice; Morphine Derivatives; Naltrexone; Pain; Receptors, Opioid, delta

1994