herbimycin and 20-hydroxy-5-8-11-14-eicosatetraenoic-acid

herbimycin has been researched along with 20-hydroxy-5-8-11-14-eicosatetraenoic-acid* in 2 studies

Other Studies

2 other study(ies) available for herbimycin and 20-hydroxy-5-8-11-14-eicosatetraenoic-acid

ArticleYear
Effects of protein tyrosine kinase and protein tyrosine phosphatase on apical K(+) channels in the TAL.
    American journal of physiology. Cell physiology, 2001, Volume: 281, Issue:4

    We have previously demonstrated that the protein level of c-Src, a nonreceptor type of protein tyrosine kinase (PTK), was higher in the renal medulla from rats on a K-deficient (KD) diet than that in rats on a high-K (HK) diet (Wang WH, Lerea KM, Chan M, and Giebisch G. Am J Physiol Renal Physiol 278: F165-F171, 2000). We have now used the patch-clamp technique to investigate the role of PTK in regulating the apical K channels in the medullary thick ascending limb (mTAL) of the rat kidney. Inhibition of PTK with herbimycin A increased NP(o), a product of channel number (N) and open probability (P(o)), of the 70-pS K channel from 0.12 to 0.42 in the mTAL only from rats on a KD diet but had no significant effect in tubules from animals on a HK diet. In contrast, herbimycin A did not affect the activity of the 30-pS K channel in the mTAL from rats on a KD diet. Moreover, addition of N-methylsulfonyl-12,12-dibromododec-11-enamide, an agent that inhibits the cytochrome P-450-dependent production of 20-hydroxyeicosatetraenoic acid, further increased NP(o) of the 70-pS K channel in the presence of herbimycin A. Furthermore, Western blot detected the presence of PTP-1D, a membrane-associated protein tyrosine phosphatase (PTP), in the renal outer medulla. Inhibition of PTP with phenylarsine oxide (PAO) decreased NP(o) of the 70-pS K channel in the mTAL from rats on a HK diet. However, PAO did not inhibit the activity of the 30-pS K channel in the mTAL. The effect of PAO on the 70-pS K channel was due to indirectly stimulating PTK because pretreatment of the mTAL with herbimycin A abolished the inhibitory effect of PAO. Finally, addition of exogenous c-Src reversibly blocked the activity of the 70-pS K channel in inside-out patches. We conclude that PTK and PTP have no effect on the low-conductance K channels in the mTAL and that PTK-induced tyrosine phosphorylation inhibits, whereas PTP-induced tyrosine dephosphorylation stimulates, the apical 70-pS K channel in the mTAL.

    Topics: Amides; Animals; Arsenicals; Benzoquinones; CSK Tyrosine-Protein Kinase; Enzyme Inhibitors; Female; Hydroxyeicosatetraenoic Acids; Hyperkalemia; Hypokalemia; Lactams, Macrocyclic; Loop of Henle; Male; Phosphorylation; Potassium; Potassium Channels; Potassium Channels, Inwardly Rectifying; Protein Tyrosine Phosphatases; Protein-Tyrosine Kinases; Quinones; Rats; Rats, Sprague-Dawley; Rifabutin; Sodium; Specific Pathogen-Free Organisms; src-Family Kinases; Sulfones

2001
Angiotensin II inhibits HCO-3 absorption via a cytochrome P-450-dependent pathway in MTAL.
    The American journal of physiology, 1999, Volume: 276, Issue:5

    The role of ANG II in the regulation of ion reabsorption by the renal thick ascending limb is poorly understood. Here, we demonstrate that ANG II (10(-8) M in the bath) inhibits HCO-3 absorption by 40% in the isolated, perfused medullary thick ascending limb (MTAL) of the rat. The inhibition by ANG II was abolished by pretreatment with eicosatetraynoic acid (10 microM), a general inhibitor of arachidonic acid metabolism, or 17-octadecynoic acid (10 microM), a highly selective inhibitor of cytochrome P-450 pathways. Bath addition of 20-hydroxyeicosatetraenoic acid (20-HETE; 10(-8) M), the major P-450 metabolite in the MTAL, inhibited HCO-3 absorption, whereas pretreatment with 20-HETE prevented the inhibition by ANG II. The addition of 15-HETE (10(-8) M) to the bath had no effect on HCO-3 absorption. The inhibition of HCO-3 absorption by ANG II was reduced by >50% in the presence of the tyrosine kinase inhibitors genistein (7 microM) or herbimycin A (1 microM). We found no role for cAMP, protein kinase C, or NO in the inhibition by ANG II. However, addition of the exogenous NO donor S-nitroso-N-acetylpenicillamine (SNAP; 10 microM) or the NO synthase (NOS) substrate L-arginine (1 mM) to the bath stimulated HCO-3 absorption by 35%, suggesting that NO directly regulates MTAL HCO-3 absorption. Addition of 10(-11) to 10(-10) M ANG II to the bath did not affect HCO-3 absorption. We conclude that ANG II inhibits HCO-3 absorption in the MTAL via a cytochrome P-450-dependent signaling pathway, most likely involving the production of 20-HETE. Tyrosine kinase pathways also appear to play a role in the ANG II-induced transport inhibition. The inhibition of HCO-3 absorption by ANG II in the MTAL may play a key role in the ability of the kidney to regulate sodium balance and extracellular fluid volume independently of acid-base balance.

    Topics: 5,8,11,14-Eicosatetraynoic Acid; 8-Bromo Cyclic Adenosine Monophosphate; Acid-Base Equilibrium; Angiotensin II; Animals; Benzoquinones; Bicarbonates; Cyclic AMP; Cytochrome P-450 Enzyme System; Enzyme Inhibitors; Genistein; Hydroxyeicosatetraenoic Acids; Kidney Medulla; Lactams, Macrocyclic; Loop of Henle; Male; Nitric Oxide; Protein Kinase C; Protein-Tyrosine Kinases; Quinones; Rats; Rats, Sprague-Dawley; Rifabutin; Signal Transduction; Sodium

1999