heparitin-sulfate has been researched along with sodium-borohydride* in 3 studies
3 other study(ies) available for heparitin-sulfate and sodium-borohydride
Article | Year |
---|---|
Inhibition of experimental lung metastases of Lewis lung carcinoma cells by chemically modified heparin with reduced anticoagulant activity.
Heparin, a widely used anticoagulant, is known to have anti-metastatic activity, although the mechanism is not fully understood. In the present study, we investigated the mechanism of this anti-metastatic activity using periodate-oxidized and borohydride-reduced heparin with low anticoagulant activity (LAC heparin). The anticoagulant activity of LAC heparin is markedly reduced to almost the control level in terms of prothrombin time in vitro, and no hemorrhagic complication was observed with injection of LAC heparin into mice in vivo. LAC heparin injected intravenously with Lewis lung carcinoma cells or 10 min before tumor cell injection significantly inhibited, to the same extent as intact heparin and in a dose- and time-dependent manner, the lung colonization that develops after intravenous injection (i.v.) of tumor cells. Flow cytometric analysis revealed that Lewis lung carcinoma cells strongly express heparan sulfate on their surface. Both the LAC heparin and intact heparin inhibited the adhesion and invasion of tumor cells to Matrigel-coated dishes in vitro without significant effect on the tumor cell growth. LAC heparin also significantly diminished tumor cell retention in the lung after i.v. of LacZ gene-tagged Lewis lung carcinoma cells. These results suggest that LAC heparin may prevent tumor cells from attachment to the subendothelial matrix of lung capillaries by competitively inhibiting cell surface heparan sulfate functions and suppress lung colonization. Topics: Animals; Anticoagulants; Borohydrides; Carcinoma, Lewis Lung; Cell Adhesion; Cell Division; Dose-Response Relationship, Drug; Flow Cytometry; Heparin; Heparitin Sulfate; Lung Neoplasms; Male; Mice; Mice, Inbred C57BL; Neoplasm Invasiveness; Periodic Acid; Survival Rate; Time Factors; Tumor Cells, Cultured | 2004 |
Enhancement of neurite outgrowth-promoting activity by heparin derivatives in sodium chlorate-treated explant cultures of rat central neurons.
Periodate-oxidized/borohydride-reduced 2-O-desulfated heparin (OR2DSH) was prepared using intact heparin from pig intestine as the starting material. Successive treatments of the heparin by oxidation with sodium periodate and reduction with sodium borohydride yielded periodate-oxidized/borohydride-reduced heparin (OR-heparin). Subsequent 2-O-desulfation of OR-heparin, according to a previously established method, yielded OR2DSH. Digestion of OR2DSH with heparitinases generated unsaturated disaccharides, comprising 86.5% DeltaDiHS-(6,N)S (DeltaUA1-->4GlcNS(6S)) and 13.5% DeltaDiHS-NS (DeltaUA1-->4GlcNS), as well as undigested oligosaccharides in which uronate moieties were derivatized by the cleavage of the covalent bond between the C-2 and C-3 positions by periodate-oxidation. The molecular mass of OR2DSH was determined to be 11 kDa, which is almost the same as those of other heparin derivatives such as 2-O-desulfated heparin (2DSH), 6-O-desulfated heparin (6DSH) and N-desulfated N-reacetylated heparin (NDSNAc-heparin). The ability of OR2DSH to enhance neurite outgrowth-promoting activity was evaluated using the explant culture of neocortical tissue from rat embryo in which endogenous heparan sulfate at the cell surface lost substantial numbers of sulfate groups by the action of 40 micro M sodium chlorate. The maximum activity of OR2DSH (29.7%) was achieved at 10 micro g/ml, and those of OR-heparin (21.7%), 2DSH (18.7%) and intact heparin (16.3%) were 100 micro g/ml, whereas that of NDSNAc-heparin (16.5%) was 1,000 micro g/ml. Completely 6-O-desulfated heparin (100:6DSH) exhibited very weak activity (3.3%) at 1,000 micro g/ml. These results suggest that the potency of OR2DSH to enhance neurite outgrowth-promoting activity is exerted synergetically by two different components in OR2DSH, i.e., the IdoA alpha1-->4GlcNS(6S) unit, which contains 6-O- and 2-N-sulfate groups, and the uronate moiety in which the covalent bond between C-2 and C-3 is cleaved, although the mode of action remains to be clarified. Topics: Animals; Borohydrides; Carbohydrate Sequence; Cell Division; Culture Techniques; Female; Heparin; Heparitin Sulfate; Molecular Sequence Data; Neurites; Periodic Acid; Rats; Rats, Wistar | 2003 |
Heparan sulfate proteoglycan from human and equine glomeruli and tubules.
1. Proteoglycans were isolated from human and equine glomeruli or tubules by guanidine extraction and anion exchange chromatography. 2. These proteoglycan preparations contained about equal amounts of heparan sulfate and chondroitin sulfates. 3. During the preparation of glomerular or tubular basement membranes the main part of proteoglycans (greater than 50%) was extracted in the salt extract. Chondroitin sulfate proteoglycan was mainly found in the water and salt extracts of glomeruli and tubules, heparan sulfate proteoglycan in the deoxycholate extracts and the basement membranes. 4. The glomerular basement membrane (GBM) contains about 12% (human) or 20% (equine) of the proteoglycans of the total glomerulus. They consist of greater than 70% (equine) or 80% (human) of heparan sulfate. 5. Heparan sulfate proteoglycan was isolated from the proteoglycan preparations of human or equine glomeruli and tubules by additional treatment with nucleases and chondroitinase ABC followed by CsCl gradient centrifugation. 6. Protein accounts for about 40% (dry weight) of the heparan sulfate proteoglycans. Their amino acid composition is characterized by a high content of glycine, but 3-hydroxyproline, 4-hydroxyproline and hydroxylysine are lacking. 7. The biochemical characteristics of the heparan sulfate proteoglycan of human or equine glomeruli or tubules differ from that isolated from rat glomeruli by their higher protein content and their amino acid composition. The significance of these differences is discussed. Topics: Amino Acids; Animals; Borohydrides; Chondroitin Sulfate Proteoglycans; Chromatography, DEAE-Cellulose; Electrophoresis, Cellulose Acetate; Glycosaminoglycans; Heparan Sulfate Proteoglycans; Heparitin Sulfate; Horses; Humans; Kidney Glomerulus; Kidney Tubules; Membranes; Nitrous Acid; Proteoglycans | 1988 |