Page last updated: 2024-08-23

heme and heme d1

heme has been researched along with heme d1 in 35 studies

Research

Studies (35)

TimeframeStudies, this research(%)All Research%
pre-19907 (20.00)18.7374
1990's9 (25.71)18.2507
2000's3 (8.57)29.6817
2010's13 (37.14)24.3611
2020's3 (8.57)2.80

Authors

AuthorsStudies
Carlin, RT; Timkovich, R1
Chang, CK; Tiedje, JM; Weeg-Aerssens, E; Wu, WS; Ye, RW1
Andersson, LA; Chang, CK; Loehr, TM; Timkovich, R; Wu, WS1
Baker, DC; Bondoc, LL; Hebbler, A; Timkovich, R; Yap-Bondoc, F1
Falksen, K; Horowitz, P; Muhoberac, BB; Wharton, DC1
Chang, CK; Wu, W1
Gennis, RB; Timkovich, R; Vavra, MR; Yap, F1
Chang, CK; Timkovich, R; Wu, W1
Chang, CK2
Barber, D; Greenwood, C; Johnson, MK; Thomson, AJ; Walsh, TA1
Ching, Y; Muhoberac, BB; Ondrias, MR; Rousseau, DL; Wharton, DC1
Hull, HH; Wharton, DC1
Arai, H; Igarashi, Y; Kawasaki, S; Kodama, T2
Ferguson, SJ; Kobayashi, K; Koppenhöfer, A; Tagawa, S1
Ferguson, SJ; Kobayashi, K; Koppenhöfer, A; Tagawa, S; Watmough, NJ1
Cai, M; Cha, JK; Liang, Q; Timkovich, R; Youn, HS1
Centola, F; Cutruzzolà, F; Goldfarb, D; Pecht, I; Radoul, M; Rinaldo, S1
Brindley, AA; Ferguson, SJ; Rigby, SE; Warren, MJ; Zajicek, R1
Allen, JW; Arcovito, A; Brunori, M; Castiglione, N; Cutruzzolà, F; Ferguson, SJ; Rinaldo, S; Sam, KA; Stelitano, V1
Castiglione, N; Cutruzzolà, F; Giardina, G; Rinaldo, S; Stelitano, V1
Heinz, DW; Klink, BU; Krausze, J; Layer, G; Saha, S; Storbeck, S1
Adamczack, J; Buchmeier, S; Felgenträger, U; Haufschildt, K; Jänsch, L; Kucklick, M; Layer, G; Münch, K; Nicke, T; Riedel, K; Schnitzer, T1
Bali, S; Borg, S; Ferguson, SJ; Katzmann, E; Li, Y; Schüler, D1
Arai, H; Haufschildt, K; Heinz, DW; Kriegler, TM; Layer, G; Neumann, A; Schmelz, S; Streif, J1
Cutruzzolà, F; Giardina, G; Rinaldo, S1
Adamczack, J; Bröring, M; Haufschildt, K; Hildebrandt, P; Hoffmann, M; Kuhlmann, U; Layer, G; Nicke, T; Papke, U; Sezer, M; Weimar, R1
Dailey, HA; Dailey, TA; Gerdes, S; Jahn, D; Jahn, M; O'Brian, MR; Warren, MJ1
Billig, S; Birkemeyer, C; Boss, L; Layer, G; Oehme, R1
Amanullah, S; Dey, A; Saha, P; Saha, R1
Adamczack, J; Blankenfeldt, W; Harnisch, F; Klünemann, T; Layer, G; Preuß, A; Rosa, LFM1
Blankenfeldt, W; Henke, S; Klünemann, T1
Blankenfeldt, W; Jänsch, L; Klünemann, T; Layer, G; Nimtz, M1
Blankenfeldt, W; Klünemann, T1

Reviews

1 review(s) available for heme and heme d1

ArticleYear
Prokaryotic Heme Biosynthesis: Multiple Pathways to a Common Essential Product.
    Microbiology and molecular biology reviews : MMBR, 2017, Volume: 81, Issue:1

    Topics: Aminolevulinic Acid; Archaea; Bacteria; Coproporphyrinogen Oxidase; Coproporphyrins; Heme; Iron; Protoporphyrins; Tetrapyrroles; Uroporphyrinogen Decarboxylase

2017

Other Studies

34 other study(ies) available for heme and heme d1

ArticleYear
A novel derivative of the prosthetic group heme d1: S-methylporphyrindione d1.
    Biochimica et biophysica acta, 1992, Mar-05, Volume: 1116, Issue:1

    Topics: Chromatography, High Pressure Liquid; Cytochrome c Group; Cytochromes; Heme; Magnetic Resonance Spectroscopy; Mass Spectrometry; Mesoporphyrins; Nitrite Reductases

1992
Purification of cytochrome cd1 nitrite reductase from Pseudomonas stutzeri JM300 and reconstitution with native and synthetic heme d1.
    The Journal of biological chemistry, 1991, Apr-25, Volume: 266, Issue:12

    Topics: Amino Acid Sequence; Cells, Cultured; Cytochromes; Electron Transport Complex IV; Electrophoresis, Polyacrylamide Gel; Heme; Molecular Sequence Data; Molecular Weight; Nitric Oxide; Nitrite Reductases; Nitrous Oxide; Protein Conformation; Pseudomonas; Sequence Homology, Nucleic Acid; Spectrophotometry, Ultraviolet

1991
Modelling heme d1. The spectral properties of copper(II) porphyrindiones.
    FEBS letters, 1990, Jul-16, Volume: 267, Issue:2

    Topics: Acrylates; Copper; Heme; NADH, NADPH Oxidoreductases; Nitrite Reductases; Pseudomonas aeruginosa; Spectrophotometry, Infrared; Spectrum Analysis, Raman

1990
C-methylation occurs during the biosynthesis of heme d1.
    The Journal of biological chemistry, 1990, Aug-15, Volume: 265, Issue:23

    Topics: Bacterial Proteins; Carbon Isotopes; Cytochrome c Group; Cytochromes; Heme; Isotope Labeling; Magnetic Resonance Spectroscopy; Methionine; Methylation; Molecular Structure; Nitrite Reductases; Pseudomonas aeruginosa

1990
Perturbation of Pseudomonas cytochrome oxidase by guanidine hydrochloride to detect differential stabilization of the heme d1 and heme c moieties.
    Biochimica et biophysica acta, 1986, Jun-05, Volume: 871, Issue:2

    Topics: Chromatography, Gel; Circular Dichroism; Electron Transport Complex IV; Guanidine; Guanidines; Heme; Macromolecular Substances; Pseudomonas; Spectrometry, Fluorescence

1986
The porphinedione structure of heme d1. Synthesis and spectral properties of model compounds of the prosthetic group of dissimilatory nitrite reductase.
    The Journal of biological chemistry, 1986, Jul-05, Volume: 261, Issue:19

    Topics: Heme; Magnetic Resonance Spectroscopy; NADH, NADPH Oxidoreductases; Nitrite Reductases; Spectrophotometry; Structure-Activity Relationship

1986
Spectroscopic studies on heme d in the visible and infrared.
    Archives of biochemistry and biophysics, 1986, Nov-01, Volume: 250, Issue:2

    Topics: Binding Sites; Fourier Analysis; Heme; Hydrogen-Ion Concentration; Oxidation-Reduction; Solutions; Solvents; Spectrophotometry; Spectrophotometry, Infrared

1986
Evidence that heme d1 is a 1,3-porphyrindione.
    Biochemistry, 1986, Dec-30, Volume: 25, Issue:26

    Topics: Bacteria; Heme; Magnetic Resonance Spectroscopy; Molecular Conformation; Nitrite Reductases; Porphyrins; Spectrophotometry

1986
On the structure of heme d1. An isobacteriochlorin derivative as the prosthetic group of dissimilatory nitrite reductase?
    The Journal of biological chemistry, 1985, Aug-15, Volume: 260, Issue:17

    Topics: Cytochrome c Group; Cytochromes; Heme; Magnetic Resonance Spectroscopy; NADH, NADPH Oxidoreductases; Nitrite Reductases; Paracoccus denitrificans; Porphyrins; Pseudomonas aeruginosa; Spectrophotometry

1985
Studies on heme d1 extracted from Pseudomonas aeruginosa nitrite reductase.
    Journal of inorganic biochemistry, 1981, Volume: 14, Issue:1

    Topics: Carbon Monoxide; Cyanides; Dithionite; Electron Spin Resonance Spectroscopy; Heme; Hydrogen-Ion Concentration; Imidazoles; Iron; NADH, NADPH Oxidoreductases; Nitric Oxide; Nitrite Reductases; Protein Binding; Pseudomonas aeruginosa; Spectrophotometry

1981
Resonance Raman spectra of heme c and heme d1 in Pseudomonas cytochrome oxidase.
    FEBS letters, 1982, Feb-22, Volume: 138, Issue:2

    Topics: Electron Transport Complex IV; Heme; Pseudomonas; Spectrum Analysis, Raman

1982
Haem d1 and other haem cofactors from bacteria.
    Ciba Foundation symposium, 1994, Volume: 180

    Topics: Crystallography, X-Ray; Escherichia coli; Heme; Molecular Structure; Pseudomonas aeruginosa

1994
Isoelectrophoretic characterization of Pseudomonas cytochrome oxidase/nitrite reductase and its heme d1-containing domain.
    Archives of biochemistry and biophysics, 1993, Feb-15, Volume: 301, Issue:1

    Topics: Amino Acid Sequence; Electron Transport Complex IV; Electrophoresis; Electrophoresis, Polyacrylamide Gel; Heme; Hydrogen-Ion Concentration; Isoelectric Focusing; Isoelectric Point; Molecular Sequence Data; Molecular Weight; Nitrite Reductases; Pseudomonas aeruginosa; Subtilisins

1993
Sequencing and characterization of the downstream region of the genes encoding nitrite reductase and cytochrome c-551 (nirSM) from Pseudomonas aeruginosa: identification of the gene necessary for biosynthesis of heme d1.
    Gene, 1995, Dec-29, Volume: 167, Issue:1-2

    Topics: Amino Acid Sequence; Bacterial Proteins; Base Sequence; Cytochrome c Group; DNA, Bacterial; Genes, Bacterial; Heme; Molecular Sequence Data; Mutagenesis; Nitrite Reductases; Pseudomonas aeruginosa; Restriction Mapping

1995
Gene cluster for dissimilatory nitrite reductase (nir) from Pseudomonas aeruginosa: sequencing and identification of a locus for heme d1 biosynthesis.
    Journal of bacteriology, 1997, Volume: 179, Issue:1

    Topics: Amino Acid Sequence; Bacterial Proteins; Cloning, Molecular; Cytochromes; Electron Transport Complex IV; Genes, Bacterial; Genetic Complementation Test; Heme; Molecular Sequence Data; Multigene Family; Nitrite Reductases; Open Reading Frames; Pseudomonas aeruginosa; Restriction Mapping; Sequence Analysis, DNA; Sequence Homology, Amino Acid

1997
Pulse radiolysis studies on cytochrome cd1 nitrite reductase from Thiosphaera pantotropha: evidence for a fast intramolecular electron transfer from c-heme to d1-heme.
    Biochemistry, 1997, Nov-04, Volume: 36, Issue:44

    Topics: Cytochrome c Group; Cytochromes; Electron Transport; Gram-Negative Chemolithotrophic Bacteria; Heme; Kinetics; Nitrite Reductases; Pulse Radiolysis

1997
Intramolecular electron transfer from c heme to d1 heme in bacterial cytochrome cd1 nitrite reductase occurs over the same distances at very different rates depending on the source of the enzyme.
    Biochemistry, 2001, Jul-24, Volume: 40, Issue:29

    Topics: Cytochrome c Group; Cytochromes; Electron Transport; Free Radicals; Heme; Kinetics; Niacinamide; Nitrite Reductases; Oxidation-Reduction; Oxidoreductases; Paracoccus; Pseudomonas aeruginosa; Pulse Radiolysis; Spectrophotometry

2001
Compound 800, a natural product isolated from genetically engineered Pseudomonas: proposed structure, reactivity, and putative relation to heme d1.
    Biochemistry, 2004, Aug-24, Volume: 43, Issue:33

    Topics: Enzymes; Escherichia coli; Heme; Molecular Structure; Multigene Family; Pseudomonas; Tetrapyrroles; Transduction, Genetic; Uroporphyrins

2004
Heme d1 nitrosyl complex of cd1 nitrite reductase studied by high-field-pulse electron paramagnetic resonance spectroscopy.
    Inorganic chemistry, 2009, May-04, Volume: 48, Issue:9

    Topics: Bacterial Proteins; Crystallization; Cytochromes; Electron Spin Resonance Spectroscopy; Heme; Ligands; Nitric Oxide; Nitrite Reductases; Protein Binding; Protein Conformation; Pseudomonas aeruginosa; Tyrosine

2009
NirJ, a radical SAM family member of the d1 heme biogenesis cluster.
    FEBS letters, 2010, Jun-03, Volume: 584, Issue:11

    Topics: Heme; Methionine

2010
Observation of fast release of NO from ferrous d₁ haem allows formulation of a unified reaction mechanism for cytochrome cd₁ nitrite reductases.
    The Biochemical journal, 2011, Apr-01, Volume: 435, Issue:1

    Topics: Apoproteins; Bacterial Proteins; Biocatalysis; Cytochromes; Denitrification; Heme; Kinetics; Models, Molecular; Myoglobin; Nitric Oxide; Nitrite Reductases; Oxidation-Reduction; Paracoccus pantotrophus; Photolysis

2011
The catalytic mechanism of Pseudomonas aeruginosa cd1 nitrite reductase.
    Biochemical Society transactions, 2011, Volume: 39, Issue:1

    Topics: Bacterial Proteins; Catalytic Domain; Denitrification; Electrons; Heme; Molecular Structure; Nitrite Reductases; Nitrites; Protein Conformation; Pseudomonas aeruginosa

2011
Crystal structure of the heme d1 biosynthesis enzyme NirE in complex with its substrate reveals new insights into the catalytic mechanism of S-adenosyl-L-methionine-dependent uroporphyrinogen III methyltransferases.
    The Journal of biological chemistry, 2011, Jul-29, Volume: 286, Issue:30

    Topics: Bacterial Proteins; Catalysis; Crystallography, X-Ray; Heme; Methyltransferases; Mutagenesis, Site-Directed; Mutation, Missense; Protein Structure, Tertiary; Pseudomonas aeruginosa; Uroporphyrinogens

2011
Maturation of the cytochrome cd1 nitrite reductase NirS from Pseudomonas aeruginosa requires transient interactions between the three proteins NirS, NirN and NirF.
    Bioscience reports, 2013, Jun-27, Volume: 33, Issue:3

    Topics: Bacterial Proteins; Cytochromes; Denitrification; Heme; Humans; Immunoprecipitation; Nitrite Reductases; Protein Interaction Maps; Pseudomonas aeruginosa; Pseudomonas Infections; Tetrapyrroles

2013
Cytochrome cd1 nitrite reductase NirS is involved in anaerobic magnetite biomineralization in Magnetospirillum gryphiswaldense and requires NirN for proper d1 heme assembly.
    Journal of bacteriology, 2013, Volume: 195, Issue:18

    Topics: Anaerobiosis; Bacterial Proteins; Cytochromes; Ferrosoferric Oxide; Heme; Iron; Magnetosomes; Magnetospirillum; Nitrite Reductases; Nitrites; Oxidation-Reduction

2013
The crystal structure of siroheme decarboxylase in complex with iron-uroporphyrin III reveals two essential histidine residues.
    Journal of molecular biology, 2014, Sep-23, Volume: 426, Issue:19

    Topics: Amino Acid Sequence; Bacteria; Bacterial Proteins; Binding Sites; Carboxy-Lyases; Catalytic Domain; Decarboxylation; Heme; Histidine; Iron; Models, Molecular; Molecular Sequence Data; Mutagenesis, Site-Directed; Protein Binding; Sequence Alignment; Uroporphyrins

2014
Nitrosylation of c heme in cd(1)-nitrite reductase is enhanced during catalysis.
    Biochemical and biophysical research communications, 2014, Aug-29, Volume: 451, Issue:3

    Topics: Bacterial Proteins; Catalysis; Heme; Nitric Oxide; Nitrite Reductases; Pseudomonas aeruginosa

2014
NirN protein from Pseudomonas aeruginosa is a novel electron-bifurcating dehydrogenase catalyzing the last step of heme d1 biosynthesis.
    The Journal of biological chemistry, 2014, Oct-31, Volume: 289, Issue:44

    Topics: Anaerobiosis; Bacterial Proteins; Heme; Oxidation-Reduction; Oxidoreductases; Protein Binding; Pseudomonas aeruginosa; Spectrum Analysis, Raman

2014
The Radical SAM enzyme NirJ catalyzes the removal of two propionate side chains during heme d
    The FEBS journal, 2017, Volume: 284, Issue:24

    Topics: Amino Acid Motifs; Amino Acid Sequence; Bacterial Proteins; Catalysis; Chromatography, High Pressure Liquid; Dithionite; Heme; Iron-Sulfur Proteins; Models, Chemical; Molecular Structure; Mutagenesis, Site-Directed; Nitrate Reductase; Propionates; Recombinant Fusion Proteins; Reducing Agents; Rhodobacteraceae; S-Adenosylmethionine; Sequence Alignment; Sequence Homology, Amino Acid; Species Specificity; Substrate Specificity; Tetrapyrroles

2017
Synthetic Iron Porphyrins for Probing the Differences in the Electronic Structures of Heme a
    Inorganic chemistry, 2019, Jan-07, Volume: 58, Issue:1

    Topics: Carbon Monoxide; Coordination Complexes; Density Functional Theory; Heme; Iron; Metalloporphyrins; Models, Chemical; Nitric Oxide; Oxidation-Reduction

2019
Crystal Structure of Dihydro-Heme d
    Journal of molecular biology, 2019, 08-09, Volume: 431, Issue:17

    Topics: Amino Acids; Bacterial Proteins; Binding Sites; Catalysis; Cytochromes c; Heme; Humans; Models, Molecular; Nitric Oxide; Nitrite Reductases; Nitrites; Oxidation-Reduction; Oxidoreductases; Protein Conformation; Protein Domains; Pseudomonas aeruginosa; Transition Temperature

2019
The crystal structure of the heme d
    Acta crystallographica. Section D, Structural biology, 2020, Apr-01, Volume: 76, Issue:Pt 4

    Topics: Anion Transport Proteins; Bacterial Proteins; Crystallography, X-Ray; Heme; Models, Molecular; Operon; Protein Multimerization; Protein Structure, Tertiary; Pseudomonas aeruginosa

2020
Crystal structure of NirF: insights into its role in heme d
    The FEBS journal, 2021, Volume: 288, Issue:1

    Topics: Amino Acid Sequence; Bacterial Proteins; Binding Sites; Cloning, Molecular; Crystallography, X-Ray; Denitrification; Escherichia coli; Gene Deletion; Gene Expression; Genetic Vectors; Heme; Models, Molecular; Periplasm; Protein Binding; Protein Conformation, alpha-Helical; Protein Conformation, beta-Strand; Protein Interaction Domains and Motifs; Protein Multimerization; Pseudomonas aeruginosa; Recombinant Proteins; Sequence Alignment; Sequence Homology, Amino Acid; Substrate Specificity; Thermodynamics

2021
Structure of heme d
    Acta crystallographica. Section F, Structural biology communications, 2020, Jun-01, Volume: 76, Issue:Pt 6

    Topics: Bacterial Proteins; Crystallography, X-Ray; Heme; Models, Molecular; Nitrite Reductases; Protein Conformation; Pseudomonas aeruginosa

2020