hasubanan has been researched along with acutumine* in 2 studies
2 other study(ies) available for hasubanan and acutumine
Article | Year |
---|---|
Substrate-modified functional group reactivity: hasubanan and acutumine alkaloid syntheses.
Functional group taxonomy provides a powerful conceptual framework to classify and predict the chemical reactivity of molecular structures. These principals are most effective in monofunctional settings, wherein individual functional groups can be analyzed without complications. In more complex settings, the predictive value of these analyses decreases as alternative reaction pathways, promoted by neighboring substituents and aggregate molecular properties, emerge. We refer to this phenomenon as substrate-modified functional group reactivity. In this Perspective, we explain how substrate-modified functional group reactivity molded our synthetic routes to the hasubanan and acutumine alkaloids. These investigations underscore the potential for discovery and insight that can only be gained by studying the reactivity of complex multifunctional structures. Topics: Alkaloids; Biochemical Phenomena; Heterocyclic Compounds, 4 or More Rings; Molecular Structure; Spiro Compounds | 2014 |
Development of enantioselective synthetic routes to the hasubanan and acutumine alkaloids.
We describe a general strategy to prepare the hasubanan and acutumine alkaloids, a large family of botanical natural products that display antitumor, antiviral, and memory-enhancing effects. The absolute stereochemistry of the targets is established by an enantioselective Diels-Alder reaction between 5-(trimethylsilyl)cyclopentadiene (36) and 5-(2-azidoethyl)-2,3-dimethoxybenzoquinone (24). The Diels-Alder adduct 38 is transformed to the tetracyclic imine 39 by a Staudinger reduction-aza-Wittig sequence. The latter serves as a universal precursor to the targets. Key carbon-carbon bond constructions include highly diastereoselective acetylide additions to the N-methyliminium ion derived from 39 and Friedel-Crafts and Hosomi-Sakurai cyclizations to construct the carbocyclic skeleton of the targets. Initially, this strategy was applied to the syntheses of (-)-acutumine (4), (-)-dechloroacutumine (5), and four hasubanan alkaloids (1, 2, 3, and 8). Herein, the synthetic route is adapted to the syntheses of six additional hasubanan alkaloids (12, 13, 14, 15, 18, and 19). The strategic advantage of 5-(trimethylsilyl)cyclopentadiene Diels-Alder adducts is demonstrated by site-selective functionalization of distal carbon-carbon π-bonds in the presence of an otherwise reactive norbornene substructure. Evaluation of the antiproliferative properties of the synthetic metabolites revealed that four hasubanan alkaloids are submicromolar inhibitors of the N87 cell line. Topics: Alkaloids; Cycloaddition Reaction; Heterocyclic Compounds, 4 or More Rings; Molecular Structure; Spiro Compounds; Stereoisomerism | 2013 |