harpagoside and acteoside

harpagoside has been researched along with acteoside* in 5 studies

Other Studies

5 other study(ies) available for harpagoside and acteoside

ArticleYear
Influence of processing procedure on the quality of Radix Scrophulariae: a quantitative evaluation of the main compounds obtained by accelerated solvent extraction and high-performance liquid chromatography.
    Journal of separation science, 2015, Volume: 38, Issue:3

    An improved high-performance liquid chromatography with diode array detection combined with accelerated solvent extraction method was used to simultaneously determine six compounds in crude and processed Radix Scrophulariae samples. Accelerated solvent extraction parameters such as extraction solvent, temperature, number of cycles, and analysis procedure were systematically optimized. The results indicated that compared with crude Radix Scrophulariae samples, the processed samples had lower contents of harpagide and harpagoside but higher contents of catalpol, acteoside, angoroside C, and cinnamic acid. The established method was sufficiently rapid and reliable for the global quality evaluation of crude and processed herbal medicines.

    Topics: Chromatography, High Pressure Liquid; Cinnamates; Coumaric Acids; Glucosides; Glycosides; Iridoid Glucosides; Iridoid Glycosides; Phenols; Pyrans; Quality Control; Scrophularia; Solvents; Trisaccharides

2015
[Simultaneous determination of five constituents in Scrophularia ningpoensis by HPLC].
    Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica, 2011, Volume: 36, Issue:6

    To develop an HPLC method for the simultaneous quantitation of five constituents in Scrophularia ningpoensis.. Samples were analyzed on an Agilent SB-C18 column(4.6 mm x 250 mm, 5 microm) eluted with acetonitrile and water containing 0.03% phosphate acid as mobile phases in a linear gradient mode. The flow rate was kept at 1.0 mL x min(-1), and the column temperature was set to 30 degrees C. The DAD detector wavelengths were 210, 280, 330 nm.. The linear ranges were 50-400 mg x L(-1) for harpagide, 1-40 mg x L(-1) for harpagoside, 1-20 mg x L(-1) for cinnamic acid, 0.5-4.5 mg x L(-1) for acteoside,1-60 mg x L(-1) for angoroside C, respectively. The average recoveries of the five constituents were 100.8% (RSD 0.62%), 101.7% (RSD 0.32%), 98.8% (RSD 0.48%), 99.9% (RSD 1.4%), 99.2% (RSD 1.1%), respectively.. Through the validation, the method was proved to be sensitive, accurate, repeatable, and can be used for quality control of the roots of S. ningpoensis.

    Topics: Chromatography, High Pressure Liquid; Cinnamates; Coumaric Acids; Glucosides; Glycosides; Iridoid Glycosides; Phenols; Pyrans; Scrophularia; Trisaccharides

2011
Metabolic differentiations and classification of Verbascum species by NMR-based metabolomics.
    Phytochemistry, 2011, Volume: 72, Issue:16

    The genus Verbascum L. (mulleins) comprises of about 360 species of flowering plants in the Scrophulariaceae family. Mulleins have been used in the traditional folk medicine for centuries, for treatment of a wide range of human ailments, inter alia bronchitis, tuberculosis, asthma, and different inflammations. Despite all applications the knowledge of the metabolites, accumulated in different mullein species, is still limited and based mainly on determination of the major compounds. Here we report the application of 1H NMR metabolic fingerprinting in combination with principal component analyses (PCA) in five different Verbascum species. Based on the obtained results mulleins were divided in two groups: group A (Verbascum phlomoides and Verbascum densiflorum) and group B (Verbascum xanthophoeniceum, Verbascum nigrum and Verbascum phoeniceum). Further it was found that the plants in group B accumulate higher amounts of bioactive iridoid and phenylethanoid glycosides. V. xanthophoeniceum and V. nigrum accumulate higher amounts of the pharmaceutically-important harpagoside (∼0.5% on dry weight basis) and verbascoside, forsythoside B and leucosceptoside B (in total 5.6-5.8% on dry weight basis), which underlines the possibility for their application in pharmaceutical industry. To the best of our knowledge this is the first report on the analyses of Verbascum sp. leaf metabolome.

    Topics: Caffeic Acids; Glucosides; Glycosides; Iridoid Glycosides; Metabolomics; Multivariate Analysis; Nuclear Magnetic Resonance, Biomolecular; Phenols; Principal Component Analysis; Pyrans; Species Specificity; Verbascum

2011
Estimation of the relative antiinflammatory efficacies of six commercial preparations of Harpagophytum procumbens (Devil's Claw).
    Phytotherapy research : PTR, 2010, Volume: 24, Issue:3

    The current work compared the relative efficacies of six commercial formulations of H. procumbens. Each formulation was assayed for the content of harpagoside (1), harpagide (2), verbascoside (3) and 8-O-p-coumaroyl harpagide (4) and, based on the recommended dosages, the total daily amounts were determined and used to establish anti-/proinflammatory (A/P) factors. The formulations were compared using ex vivo porcine skin for their activities towards COX-2 by Western blotting. The results showed great variation in the amounts of compounds 1-4 within the six formulations examined. The relative proportions of 1-4 also varied widely between the products and this inconsistency was reflected in the A/P factors, which correlated with the COX-2 expression (R(2) = 0.9496). Although the data support the beneficial antiinflammatory effects from the use of some of the brands tested, others would appear potentially to exacerbate inflammation. To conclude, a ratio based upon the amount and relative proportions of anti- and proinflammatory compounds can be used to predict relative antiinflammatory properties. Also, with access to a diversity of ostensibly similar commercial products, the patient may experience varying therapeutic responses. Finally, current pharmacopoeia monographs, which are generally concerned with a minimum harpagoside content, are inadequate for ensuring the quality of products based on H. procumbens.

    Topics: Administration, Cutaneous; Animals; Anti-Inflammatory Agents; Cyclooxygenase 2; Dose-Response Relationship, Drug; Glucosides; Glycosides; Harpagophytum; In Vitro Techniques; Iridoid Glycosides; Phenols; Phytotherapy; Plant Extracts; Pyrans; Skin; Skin Absorption; Swine

2010
Effect of the major glycosides of Harpagophytum procumbens (Devil's Claw) on epidermal cyclooxygenase-2 (COX-2) in vitro.
    Journal of natural products, 2008, Volume: 71, Issue:5

    Harpagophytum procumbens, commonly known as Devil's Claw, is indigenous to southern Africa, and extracts of the tubers have been used for centuries in the treatment of a variety of inflammatory disorders. Its major active components, harpagoside (1), harpagide (2), 8-coumaroylharpagide (3), and verbascoside (4), are believed to interact either synergistically or antagonistically in modulating the enzymes responsible for inducing inflammation, although this has not been probed hitherto. In the current work, the ability of these compounds to inhibit the expression of COX-2 following administration to freshly excised porcine skin has been investigated. An ethanol-soluble extract of H. procumbens tubers and two of the pure compounds tested showed promising activity in Western blotting and immunocytochemical assays, with harpagoside (1) and 8-coumaroylharpagide (3) exhibiting greater reductions in COX-2 expression than verbascoside (4). Harpagide (2) caused a significant increase in the levels of COX-2 expression after 6 h of topical application. The data suggest that the efficacy of H. procumbens is dependent upon the ratios of compounds 1-4 present, which is inconsistent with some current official monograph specifications based solely on harpagoside (1) content.

    Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Coumaric Acids; Cyclooxygenase 2 Inhibitors; Epidermis; Glucosides; Glycosides; Harpagophytum; Inflammation; Iridoid Glycosides; Molecular Structure; Phenols; Plants, Medicinal; Pyrans; Swine

2008