harmine has been researched along with befloxatone* in 2 studies
2 other study(ies) available for harmine and befloxatone
Article | Year |
---|---|
Harmane inhibits serotonergic dorsal raphe neurons in the rat.
Harmane and norharmane (two beta-carbolines) are tobacco components or products. The effects of harmane and norharmane on serotonergic raphe neurons remain unknown. Harmane and norharmane are inhibitors of the monoamine oxidases A (MAO-A) and B (MAO-B), respectively.. To study the effects of harmane, norharmane, befloxatone (MAOI-A), and selegiline (MAOI-B) on the firing of serotonergic neurons. To compare the effects of these compounds to those of nicotine (whose inhibitory action on serotonergic neurons has been previously described). The effects of cotinine, a metabolite of nicotine known to interact with serotonergic systems, are also tested.. In vivo electrophysiological recordings of serotonergic dorsal raphe neurons in the anaesthetized rat.. Nicotine, harmane, and befloxatone inhibited serotonergic dorsal raphe neurons. The other compounds had no effects. The inhibitory effect of harmane (rapid and long-lasting inhibition) differed from that of nicotine (short and rapidly reversed inhibition) and from that of befloxatone (slow, progressive, and long-lasting inhibition). The inhibitory effects of harmane and befloxatone were reversed by the 5-HT1A antagonist WAY 100 635. Pretreatment of animals with p-chlorophenylalanine abolished the inhibitory effect of befloxatone, but not that of harmane.. Nicotine, harmane, and befloxatone inhibit the activity of raphe serotonergic neurons. Therefore, at least two tobacco compounds, nicotine and harmane, inhibit the activity of serotonergic neurons. The mechanism by which harmane inhibits serotonergic dorsal raphe neurons is likely unrelated to a MAO-A inhibitory effect. Topics: Action Potentials; Analysis of Variance; Animals; Carbolines; Citalopram; Dose-Response Relationship, Drug; Drug Interactions; Enzyme Inhibitors; Harmine; Male; Neurons; Neurotoxins; Nicotine; Nicotinic Agonists; Oxazoles; Phenethylamines; Piperazines; Pyridines; Raphe Nuclei; Rats; Rats, Sprague-Dawley; Selective Serotonin Reuptake Inhibitors; Selegiline; Serotonin; Serotonin Antagonists | 2005 |
Inhibitors alter the spectrum and redox properties of monoamine oxidase A.
Monoamine oxidase A (MAO A) catalyses the oxidation of both neurotransmitter and ingested amines. The mechanism of catalysis involves the covalently bound FAD cofactor. Although substrates and inhibitors alter the thermodynamic and kinetic properties of the flavin, how the ligands interact with the flavin is unknown. This work characterises the spectral changes that occur on inhibitor binding to MAO A and examines how the binding influences the flavin. The inhibitors, D-amphetamine, harmine, tetrindole, and befloxatone all induce similar (but not identical) changes in the spectrum of MAO A, consistent with stacking of inhibitor with the flavin in the active site. D-Amphetamine, harmine, and tetrindole stabilise the semiquinone form of FAD during reduction of MAO A by dithionite and no further reduction of these inhibitor-MAO A complexes has been observed. In contrast, semiquinone is never observed during reduction of the befloxatone-MAO A complex. Instead, partial reduction directly to the FADH(2) form occurs extremely slowly. Thus, inhibitor binding has a strong, structure-dependent influence on the environment of the flavin that alters its electronic properties. Topics: Carbazoles; Cloning, Molecular; Dextroamphetamine; Dithionite; Harmine; Humans; Liver; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Oxazoles; Oxidation-Reduction; Recombinant Proteins; Saccharomyces cerevisiae; Spectrophotometry | 2002 |