haloperidol has been researched along with troleandomycin in 5 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 2 (40.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 2 (40.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A | 1 |
Chen, L; Fei, J; Mei, Y; Ren, S; Yan, SF; Zeng, J; Zhang, JZ | 1 |
Kudo, S; Odomi, M | 1 |
Kobayashi, S; Kumai, T; Tanaka, M; Tateishi, T; Watanabe, M | 1 |
Kobayashi, S; Kumai, T; Moriya, H; Satoh, T; Tanaka, M; Tateishi, T; Watanabe, M; Yamaguchi, S | 1 |
5 other study(ies) available for haloperidol and troleandomycin
Article | Year |
---|---|
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship | 2010 |
Discovery and characterization of novel, potent, and selective cytochrome P450 2J2 inhibitors.
Topics: Chromatography, High Pressure Liquid; Cytochrome P-450 CYP2J2; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Drug Discovery; Enzyme Inhibitors; Humans; Inhibitory Concentration 50; Kinetics; Microsomes, Liver; Models, Molecular; Molecular Dynamics Simulation; Substrate Specificity | 2013 |
Involvement of human cytochrome P450 3A4 in reduced haloperidol oxidation.
Topics: Anti-Arrhythmia Agents; Anti-Bacterial Agents; Antiparkinson Agents; Biotransformation; Biperiden; Carteolol; Cell Line, Transformed; Cytochrome P-450 CYP2D6; Cytochrome P-450 CYP2D6 Inhibitors; Cytochrome P-450 CYP3A; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Dose-Response Relationship, Drug; Haloperidol; Humans; Hydroxylation; Isoenzymes; Kinetics; Microsomes; Mixed Function Oxygenases; Oxidation-Reduction; Quinidine; Sparteine; Troleandomycin | 1998 |
Role of CYP3A in bromperidol metabolism in rat in vitro and in vivo.
Topics: Animals; Aryl Hydrocarbon Hydroxylases; Cytochrome P-450 CYP3A; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Dexamethasone; Enzyme Inhibitors; Erythromycin; Half-Life; Haloperidol; Immune Sera; Male; Microsomes, Liver; Oxidoreductases, N-Demethylating; Propionates; Quinine; Rats; Rats, Sprague-Dawley; Steroid Hydroxylases; Theophylline; Troleandomycin | 1999 |
CYP3A is responsible for N-dealkylation of haloperidol and bromperidol and oxidation of their reduced forms by human liver microsomes.
Topics: Aryl Hydrocarbon Hydroxylases; Biotransformation; Cytochrome P-450 CYP1A2; Cytochrome P-450 CYP2D6; Cytochrome P-450 CYP3A; Cytochrome P-450 Enzyme System; Haloperidol; Humans; In Vitro Techniques; Microsomes, Liver; Mixed Function Oxygenases; Oxidation-Reduction; Oxidoreductases, N-Demethylating; Propionates; Troleandomycin | 2000 |