haloperidol and sr141716

haloperidol has been researched along with sr141716 in 17 studies

Research

Studies (17)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's6 (35.29)29.6817
2010's9 (52.94)24.3611
2020's2 (11.76)2.80

Authors

AuthorsStudies
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1
Cantin, LD; Chen, H; Kenna, JG; Noeske, T; Stahl, S; Walker, CL; Warner, DJ1
Afshari, CA; Chen, Y; Dunn, RT; Hamadeh, HK; Kalanzi, J; Kalyanaraman, N; Morgan, RE; van Staden, CJ1
Jadhav, A; Kerns, E; Nguyen, K; Shah, P; Sun, H; Xu, X; Yan, Z; Yu, KR1
Kabir, M; Kerns, E; Nguyen, K; Shah, P; Sun, H; Wang, Y; Xu, X; Yu, KR1
Kabir, M; Kerns, E; Neyra, J; Nguyen, K; Nguyễn, ÐT; Shah, P; Siramshetty, VB; Southall, N; Williams, J; Xu, X; Yu, KR1
Itkin, M; Kabir, M; Mathé, EA; Nguyễn, ÐT; Padilha, EC; Shah, P; Shinn, P; Siramshetty, V; Wang, AQ; Williams, J; Xu, X; Yu, KR; Zhao, T1
Croft, DL; Hamamoto, DT; Kehl, LJ; Norsted, BD; Simone, DA; Wacnik, PW; Wilcox, GL1
Arvanitis, L; Bauer, D; Meltzer, HY; Rein, W1
Borrelli, F; Capasso, F; Capasso, R; Izzo, AA; Mascolo, N1
Egashira, N; Fujiwara, M; Iwasaki, K; Mishima, K; Mizuki, A; Nagai, H; Nishimura, R; Ogata, A; Sano, K; Shoyama, Y1
Burston, JJ; Howard, DR; Kendler, SH; Selley, DE; Sim-Selley, LJ; Wiley, JL1
Casti, P; Casu, G; Marchese, G; Pani, L; Ruiu, S; Sanna, A; Spada, GP1
Carroll, FI; McMahon, LR; Schulze, DR1
Ashton, JC; Jain, S; Mandhane, S; Nayak, P; Rajamannar, T; Soni, D1
Busanello, A; de Freitas, CM; de Moraes Reis, E; Fachinetto, R; Ferreira, J; Figueira, FH; Leal, CQ; Mello, CF; Röpke, J; Villarinho, JG1
Boomhower, SR; Rasmussen, EB1

Reviews

1 review(s) available for haloperidol and sr141716

ArticleYear
Using in vitro ADME data for lead compound selection: An emphasis on PAMPA pH 5 permeability and oral bioavailability.
    Bioorganic & medicinal chemistry, 2022, 02-15, Volume: 56

    Topics: Administration, Oral; Animals; Betamethasone; Biological Availability; Caco-2 Cells; Cell Membrane Permeability; Cells, Cultured; Dexamethasone; Dogs; Dose-Response Relationship, Drug; Humans; Hydrogen-Ion Concentration; Madin Darby Canine Kidney Cells; Mice; Molecular Structure; Neural Networks, Computer; Ranitidine; Rats; Structure-Activity Relationship; Verapamil

2022

Trials

1 trial(s) available for haloperidol and sr141716

ArticleYear
Placebo-controlled evaluation of four novel compounds for the treatment of schizophrenia and schizoaffective disorder.
    The American journal of psychiatry, 2004, Volume: 161, Issue:6

    Topics: Adolescent; Adult; Aged; Antipsychotic Agents; Cannabinoids; Double-Blind Method; Drugs, Investigational; Female; Haloperidol; Humans; Male; Middle Aged; Neurotensin; Peptide Fragments; Piperidines; Placebos; Psychotic Disorders; Pyrazoles; Pyrrolidonecarboxylic Acid; Receptors, Neurokinin-3; Research Design; Rimonabant; Schizophrenia; Serotonin 5-HT2 Receptor Antagonists; Treatment Outcome

2004

Other Studies

15 other study(ies) available for haloperidol and sr141716

ArticleYear
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010
Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification.
    Drug metabolism and disposition: the biological fate of chemicals, 2012, Volume: 40, Issue:12

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Bile Acids and Salts; Cell Line; Chemical and Drug Induced Liver Injury; Humans; Quantitative Structure-Activity Relationship

2012
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
    Toxicological sciences : an official journal of the Society of Toxicology, 2013, Volume: 136, Issue:1

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Transport; Chemical and Drug Induced Liver Injury; Cluster Analysis; Drug-Related Side Effects and Adverse Reactions; Humans; Liver; Male; Multidrug Resistance-Associated Proteins; Pharmacokinetics; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Risk Assessment; Risk Factors; Toxicity Tests

2013
Highly predictive and interpretable models for PAMPA permeability.
    Bioorganic & medicinal chemistry, 2017, 02-01, Volume: 25, Issue:3

    Topics: Artificial Intelligence; Caco-2 Cells; Cell Membrane Permeability; Humans; Models, Biological; Organic Chemicals; Regression Analysis; Support Vector Machine

2017
Predictive models of aqueous solubility of organic compounds built on A large dataset of high integrity.
    Bioorganic & medicinal chemistry, 2019, 07-15, Volume: 27, Issue:14

    Topics: Drug Discovery; Organic Chemicals; Pharmaceutical Preparations; Solubility

2019
Retrospective assessment of rat liver microsomal stability at NCATS: data and QSAR models.
    Scientific reports, 2020, 11-26, Volume: 10, Issue:1

    Topics: Animals; Computer Simulation; Databases, Factual; Drug Discovery; High-Throughput Screening Assays; Liver; Machine Learning; Male; Microsomes, Liver; National Center for Advancing Translational Sciences (U.S.); Pharmaceutical Preparations; Quantitative Structure-Activity Relationship; Rats; Rats, Sprague-Dawley; Retrospective Studies; United States

2020
A cannabinoid agonist differentially attenuates deep tissue hyperalgesia in animal models of cancer and inflammatory muscle pain.
    Pain, 2003, Volume: 103, Issue:1-2

    Topics: Animals; Benzoxazines; Calcium Channel Blockers; Camphanes; Cannabinoids; Carrageenan; Catalepsy; Disease Models, Animal; Dopamine Antagonists; Dose-Response Relationship, Drug; Drug Interactions; Fibrosarcoma; Haloperidol; Hand Strength; Humerus; Hyperalgesia; Male; Mice; Mice, Inbred C3H; Morpholines; Myositis; Naphthalenes; Neoplasm Transplantation; Neoplasms; Pain; Piperidines; Psychomotor Performance; Pyrazoles; Receptors, Cannabinoid; Receptors, Drug; Rimonabant

2003
Inhibitory effect of the antidepressant St. John's wort (hypericum perforatum) on rat bladder contractility in vitro.
    Urology, 2004, Volume: 64, Issue:1

    Topics: Acetylcholine; Adenosine Triphosphate; Animals; Anthracenes; Antidepressive Agents; Atropine; Bridged Bicyclo Compounds; Capsaicin; Depression; Electric Stimulation; Female; Haloperidol; Hypericum; Kaempferols; Male; Methysergide; Muscle Contraction; Muscle, Smooth; Naloxone; Perylene; Phentolamine; Phloroglucinol; Piperidines; Plant Extracts; Propranolol; Pyrazoles; Quercetin; Rats; Rats, Wistar; Rimonabant; Rutin; Terpenes; Tetrodotoxin; Urinary Bladder; Urinary Incontinence; Verapamil

2004
Antipsychotics improve Delta9-tetrahydrocannabinol-induced impairment of the prepulse inhibition of the startle reflex in mice.
    Pharmacology, biochemistry, and behavior, 2006, Volume: 84, Issue:2

    Topics: Acoustic Stimulation; Animals; Antipsychotic Agents; Dopamine; Dronabinol; Haloperidol; Inhibition, Psychological; Male; Mice; Nucleus Accumbens; Piperidines; Prefrontal Cortex; Pyrazoles; Reflex, Startle; Rimonabant; Risperidone; Rotarod Performance Test

2006
Antipsychotic-induced alterations in CB1 receptor-mediated G-protein signaling and in vivo pharmacology in rats.
    Neuropharmacology, 2008, Volume: 55, Issue:7

    Topics: Aging; Animals; Antipsychotic Agents; Cells, Cultured; CHO Cells; Clozapine; Cricetinae; Cricetulus; Data Interpretation, Statistical; Dose-Response Relationship, Drug; Dronabinol; Female; GTP-Binding Proteins; Guanosine 5'-O-(3-Thiotriphosphate); Haloperidol; Male; Piperidines; Pyrazoles; Rats; Rats, Long-Evans; Receptor, Cannabinoid, CB1; Rimonabant; Sex Characteristics; Signal Transduction

2008
Delta-9-tetrahydrocannabinol differently affects striatal c-Fos expression following haloperidol or clozapine administration.
    European journal of pharmacology, 2008, Nov-19, Volume: 598, Issue:1-3

    Topics: Animals; Antipsychotic Agents; Blotting, Western; Clozapine; Dronabinol; Gene Expression; Genes, fos; Haloperidol; Immunohistochemistry; Male; Neostriatum; Neurons; Piperidines; Psychotropic Drugs; Pyrazoles; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Rimonabant

2008
Interactions between dopamine transporter and cannabinoid receptor ligands in rhesus monkeys.
    Psychopharmacology, 2012, Volume: 222, Issue:3

    Topics: Amphetamine; Animals; Cocaine; Discrimination Learning; Dopamine Plasma Membrane Transport Proteins; Dose-Response Relationship, Drug; Dronabinol; Female; Haloperidol; Imipramine; Macaca mulatta; Male; Piperidines; Pyrazoles; Receptors, Cannabinoid; Rimonabant; Tropanes

2012
Induction of glucose intolerance by acute administration of rimonabant.
    Pharmacology, 2012, Volume: 89, Issue:5-6

    Topics: Administration, Oral; Animals; Benzoxazines; Blood Glucose; Dopamine Antagonists; Eating; Fenclonine; Glucose; Glucose Intolerance; Haloperidol; Hepatocytes; Infusions, Intraventricular; Insulin; Male; Mice; Morpholines; Naphthalenes; Ondansetron; Piperidines; Pyrazoles; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Receptors, Dopamine; Receptors, Serotonin; Rimonabant; Serotonin Antagonists

2012
Anandamide attenuates haloperidol-induced vacuous chewing movements in rats.
    Progress in neuro-psychopharmacology & biological psychiatry, 2014, Oct-03, Volume: 54

    Topics: Animals; Antipsychotic Agents; Arachidonic Acids; Cannabinoid Receptor Agonists; Cannabinoid Receptor Antagonists; Disease Models, Animal; Dose-Response Relationship, Drug; Dyskinesia, Drug-Induced; Endocannabinoids; Haloperidol; Male; Mastication; Movement; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Rats, Wistar; Receptor, Cannabinoid, CB1; Rimonabant; Treatment Outcome

2014
Haloperidol and rimonabant increase delay discounting in rats fed high-fat and standard-chow diets.
    Behavioural pharmacology, 2014, Volume: 25, Issue:8

    Topics: Analysis of Variance; Animals; Area Under Curve; Cannabinoid Receptor Antagonists; Choice Behavior; Conditioning, Operant; Delay Discounting; Diet, High-Fat; Dopamine Antagonists; Dose-Response Relationship, Drug; Haloperidol; Male; Piperidines; Pyrazoles; Rats; Rats, Sprague-Dawley; Reinforcement, Psychology; Rimonabant

2014