haloperidol and losartan

haloperidol has been researched along with losartan in 14 studies

Research

Studies (14)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's1 (7.14)18.2507
2000's4 (28.57)29.6817
2010's8 (57.14)24.3611
2020's1 (7.14)2.80

Authors

AuthorsStudies
Benz, RD; Contrera, JF; Kruhlak, NL; Matthews, EJ; Weaver, JL1
Andricopulo, AD; Moda, TL; Montanari, CA1
Lombardo, F; Obach, RS; Waters, NJ1
Chupka, J; El-Kattan, A; Feng, B; Miller, HR; Obach, RS; Troutman, MD; Varma, MV1
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1
Chang, G; El-Kattan, A; Miller, HR; Obach, RS; Rotter, C; Steyn, SJ; Troutman, MD; Varma, MV1
Meanwell, NA1
Cantin, LD; Chen, H; Kenna, JG; Noeske, T; Stahl, S; Walker, CL; Warner, DJ1
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K1
Benachour, N; Vanderheyden, PML1
Dranchak, PK; Huang, R; Inglese, J; Lamy, L; Oliphant, E; Queme, B; Tao, D; Wang, Y; Xia, M1
Chai, SY; Howells, DW; Jenkins, TA; Mendelsohn, FA1
Gopalakrishna, HN; Nair, V; Pai, MR; Pemminati, S; Shreyasi, C; Swati, B1
Prusty, S; Sahu, PK; Singh, VK; Subudhi, BB1

Reviews

2 review(s) available for haloperidol and losartan

ArticleYear
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
    Drug discovery today, 2016, Volume: 21, Issue:4

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk

2016
Influence of the cellular environment on ligand binding kinetics at membrane-bound targets.
    Bioorganic & medicinal chemistry letters, 2017, 08-15, Volume: 27, Issue:16

    Topics: Angiotensin II Type 1 Receptor Blockers; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Humans; Kinetics; Ligands; Protein Binding; Receptor, Angiotensin, Type 1; Receptors, Cell Surface; Signal Transduction

2017

Other Studies

12 other study(ies) available for haloperidol and losartan

ArticleYear
Assessment of the health effects of chemicals in humans: II. Construction of an adverse effects database for QSAR modeling.
    Current drug discovery technologies, 2004, Volume: 1, Issue:4

    Topics: Adverse Drug Reaction Reporting Systems; Artificial Intelligence; Computers; Databases, Factual; Drug Prescriptions; Drug-Related Side Effects and Adverse Reactions; Endpoint Determination; Models, Molecular; Quantitative Structure-Activity Relationship; Software; United States; United States Food and Drug Administration

2004
Hologram QSAR model for the prediction of human oral bioavailability.
    Bioorganic & medicinal chemistry, 2007, Dec-15, Volume: 15, Issue:24

    Topics: Administration, Oral; Biological Availability; Holography; Humans; Models, Biological; Models, Molecular; Molecular Structure; Pharmaceutical Preparations; Pharmacokinetics; Quantitative Structure-Activity Relationship

2007
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
    Drug metabolism and disposition: the biological fate of chemicals, 2008, Volume: 36, Issue:7

    Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding

2008
Physicochemical determinants of human renal clearance.
    Journal of medicinal chemistry, 2009, Aug-13, Volume: 52, Issue:15

    Topics: Humans; Hydrogen Bonding; Hydrogen-Ion Concentration; Hydrophobic and Hydrophilic Interactions; Kidney; Metabolic Clearance Rate; Molecular Weight

2009
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010
Physicochemical space for optimum oral bioavailability: contribution of human intestinal absorption and first-pass elimination.
    Journal of medicinal chemistry, 2010, Feb-11, Volume: 53, Issue:3

    Topics: Administration, Oral; Biological Availability; Humans; Intestinal Absorption; Pharmaceutical Preparations

2010
Synopsis of some recent tactical application of bioisosteres in drug design.
    Journal of medicinal chemistry, 2011, Apr-28, Volume: 54, Issue:8

    Topics: Cytochrome P-450 Enzyme System; Drug Design

2011
Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification.
    Drug metabolism and disposition: the biological fate of chemicals, 2012, Volume: 40, Issue:12

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Bile Acids and Salts; Cell Line; Chemical and Drug Induced Liver Injury; Humans; Quantitative Structure-Activity Relationship

2012
In vivo quantitative high-throughput screening for drug discovery and comparative toxicology.
    Disease models & mechanisms, 2023, 03-01, Volume: 16, Issue:3

    Topics: Animals; Caenorhabditis elegans; Drug Discovery; High-Throughput Screening Assays; Humans; Proteomics; Small Molecule Libraries

2023
Intrastriatal angiotensin II induces turning behaviour in 6-hydroxydopamine lesioned rats.
    Brain research, 1995, Sep-11, Volume: 691, Issue:1-2

    Topics: Angiotensin II; Animals; Biphenyl Compounds; Corpus Striatum; Dopamine; Functional Laterality; Haloperidol; Imidazoles; Losartan; Male; Motor Activity; Oxidopamine; Rats; Rats, Sprague-Dawley; Rotation; Substantia Nigra; Tetrazoles

1995
Co-administration of haloperidol and drugs affecting the angiotensin pathway: effect on the extrapyramidal system.
    Toxicology mechanisms and methods, 2012, Volume: 22, Issue:2

    Topics: Angiotensin II Type 1 Receptor Blockers; Angiotensin-Converting Enzyme Inhibitors; Animals; Antipsychotic Agents; Catalepsy; Enalapril; Extrapyramidal Tracts; Haloperidol; Losartan; Male; Mice

2012
Conjugation to Ascorbic Acid Enhances Brain Availability of Losartan Carboxylic Acid and Protects Against Parkinsonism in Rats.
    The AAPS journal, 2018, 10-22, Volume: 20, Issue:6

    Topics: Administration, Oral; Angiotensin II Type 1 Receptor Blockers; Animals; Ascorbic Acid; Behavior, Animal; Biological Availability; Brain; Disease Models, Animal; Drug Evaluation, Preclinical; Haloperidol; Humans; Losartan; Male; Parkinsonian Disorders; Rats; Rats, Wistar; Renin-Angiotensin System

2018