haloperidol and devazepide

haloperidol has been researched along with devazepide in 8 studies

Research

Studies (8)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's5 (62.50)18.2507
2000's1 (12.50)29.6817
2010's2 (25.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Carrupt, PA; Crivori, P; Cruciani, G; Testa, B1
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1
Cantin, LD; Chen, H; Kenna, JG; Noeske, T; Stahl, S; Walker, CL; Warner, DJ1
Ashby, CR; Minabe, Y; Wang, RY1
Hagino, Y; Moroji, T; Okuwa, M1
Bourin, M; Bradwejn, J; Harro, J; Kõks, S; Lang, A; Männistö, PT; Oreland, L; Soosaar, A; Vasar, E; Volke, V1
Corrigall, WA; Higgins, GA; Joharchi, N; Sellers, EM; Wang, Y1
Christoffersen, CL; Meltzer, LT; Razmpour, A; Serpa, KA1

Other Studies

8 other study(ies) available for haloperidol and devazepide

ArticleYear
Predicting blood-brain barrier permeation from three-dimensional molecular structure.
    Journal of medicinal chemistry, 2000, Jun-01, Volume: 43, Issue:11

    Topics: Blood-Brain Barrier; Databases, Factual; Models, Chemical; Molecular Conformation; Multivariate Analysis; Permeability; Pharmaceutical Preparations; Pharmacokinetics; Structure-Activity Relationship

2000
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010
Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification.
    Drug metabolism and disposition: the biological fate of chemicals, 2012, Volume: 40, Issue:12

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Bile Acids and Salts; Cell Line; Chemical and Drug Induced Liver Injury; Humans; Quantitative Structure-Activity Relationship

2012
The CCK-A receptor antagonist devazepide but not the CCK-B receptor antagonist L-365,260 reverses the effects of chronic clozapine and haloperidol on midbrain dopamine neurons.
    Brain research, 1991, May-17, Volume: 549, Issue:1

    Topics: Animals; Benzodiazepinones; Cholecystokinin; Clozapine; Devazepide; Dopamine; Haloperidol; Male; Mesencephalon; Neurons; Phenylurea Compounds; Rats; Rats, Inbred Strains; Receptors, Cholecystokinin; Reference Values

1991
Effects of ceruletide and haloperidol on the hypothalamo-pituitary beta-endorphin system and brain beta-endorphin contents in the rat: with special reference to effects of ceruletide in chronically haloperidol-treated rats.
    Neuropeptides, 1991, Volume: 18, Issue:1

    Topics: Animals; Benzodiazepinones; beta-Endorphin; beta-Lipotropin; Brain; Bromocriptine; Ceruletide; Devazepide; Drug Interactions; Haloperidol; Hypothalamus; Kinetics; Male; Pituitary Gland; Proglumide; Rats; Rats, Inbred Strains; Receptors, Cholecystokinin

1991
Role of N-methyl-D-aspartic acid and cholecystokinin receptors in apomorphine-induced aggressive behaviour in rats.
    Naunyn-Schmiedeberg's archives of pharmacology, 1995, Volume: 351, Issue:4

    Topics: Aggression; Animals; Apomorphine; Benzodiazepinones; Brain Chemistry; Clozapine; Devazepide; Dizocilpine Maleate; Haloperidol; Male; Phenylurea Compounds; Radioligand Assay; Rats; Rats, Wistar; Receptors, Cholecystokinin; Receptors, Dopamine D2; Receptors, N-Methyl-D-Aspartate

1995
The CCKA receptor antagonist devazepide does not modify opioid self-administration or drug discrimination: comparison with the dopamine antagonist haloperidol.
    Brain research, 1994, Mar-21, Volume: 640, Issue:1-2

    Topics: Animals; Benzodiazepinones; Cholecystokinin; Cocaine; Conditioning, Operant; Cues; Devazepide; Discrimination, Psychological; Dopamine Antagonists; Food; Haloperidol; Heroin; Male; Morphine; Narcotics; Phenylurea Compounds; Rats; Rats, Wistar; Receptors, Cholecystokinin; Self Administration

1994
Comparison of the effects of the cholecystokinin-B receptor antagonist, PD 134308, and the cholecystokinin-A receptor antagonist, L-364,718, on dopamine neuronal activity in the substantia nigra and ventral tegmental area.
    Synapse (New York, N.Y.), 1993, Volume: 13, Issue:2

    Topics: Animals; Apomorphine; Benzodiazepinones; Cholecystokinin; Devazepide; Dopamine; Dose-Response Relationship, Drug; Haloperidol; Indoles; Male; Meglumine; Neurons; Rats; Rats, Sprague-Dawley; Receptors, Cholecystokinin; Substantia Nigra; Tegmentum Mesencephali

1993