haloperidol has been researched along with amoxapine in 16 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 4 (25.00) | 18.2507 |
2000's | 6 (37.50) | 29.6817 |
2010's | 6 (37.50) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Choudhary, MS; Craigo, SC; Meltzer, HY; Monsma, FJ; Roth, BL; Shen, Y; Sibley, DR; Uluer, A | 1 |
Glennon, RA | 1 |
Benz, RD; Contrera, JF; Kruhlak, NL; Matthews, EJ; Weaver, JL | 1 |
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J | 1 |
Ahman, M; Holmén, AG; Wan, H | 1 |
Austin, CP; Fidock, DA; Hayton, K; Huang, R; Inglese, J; Jiang, H; Johnson, RL; Su, XZ; Wellems, TE; Wichterman, J; Yuan, J | 1 |
Cantin, LD; Chen, H; Kenna, JG; Noeske, T; Stahl, S; Walker, CL; Warner, DJ | 1 |
Dalvie, D; Loi, CM; Smith, DA | 1 |
Afshari, CA; Chen, Y; Dunn, RT; Hamadeh, HK; Kalanzi, J; Kalyanaraman, N; Morgan, RE; van Staden, CJ | 1 |
Bellman, K; Knegtel, RM; Settimo, L | 1 |
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
Brodsky, JL; Chiang, A; Chung, WJ; Denny, RA; Goeckeler-Fried, JL; Havasi, V; Hong, JS; Keeton, AB; Mazur, M; Piazza, GA; Plyler, ZE; Rasmussen, L; Rowe, SM; Sorscher, EJ; Weissman, AM; White, EL | 1 |
Fukushima, Y; Kaneko, S; Mihara, K; Okada, M; Otani, K | 1 |
DeQuardo, JR; Lewis, CF; Tandon, R | 1 |
Kapur, S; Remington, G | 1 |
Badshah, S; Chaudhry, IB; Deakin, B; Husain, N; Kapur, S; Khan, S | 1 |
3 review(s) available for haloperidol and amoxapine
Article | Year |
---|---|
Higher-end serotonin receptors: 5-HT(5), 5-HT(6), and 5-HT(7).
Topics: Animals; Humans; Ligands; Receptors, Serotonin; Serotonin Agents; Serotonin Antagonists; Serotonin Receptor Agonists | 2003 |
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
D2 and 5-HT2 receptor effects of antipsychotics: bridging basic and clinical findings using PET.
Topics: Amoxapine; Antipsychotic Agents; Benzodiazepines; Dibenzothiazepines; Dopamine Antagonists; Haloperidol; Humans; In Vitro Techniques; Loxapine; Olanzapine; Pirenzepine; Quetiapine Fumarate; Receptors, Dopamine; Receptors, Serotonin; Risperidone; Schizophrenia; Serotonin Antagonists; Tomography, Emission-Computed | 1999 |
1 trial(s) available for haloperidol and amoxapine
Article | Year |
---|---|
Amoxapine as an antipsychotic: comparative study versus haloperidol.
Topics: Adolescent; Adult; Age Factors; Amoxapine; Antidepressive Agents, Second-Generation; Antipsychotic Agents; Blood Pressure; Body Weight; Diagnostic and Statistical Manual of Mental Disorders; Dose-Response Relationship, Drug; Double-Blind Method; Drug Administration Schedule; Female; Haloperidol; Humans; Male; Middle Aged; Psychiatric Status Rating Scales; Schizophrenia; Schizophrenia, Disorganized; Schizophrenia, Paranoid; Sex Factors; Treatment Outcome | 2007 |
12 other study(ies) available for haloperidol and amoxapine
Article | Year |
---|---|
Binding of typical and atypical antipsychotic agents to 5-hydroxytryptamine-6 and 5-hydroxytryptamine-7 receptors.
Topics: Animals; Antipsychotic Agents; Cell Line; Molecular Structure; Rats; Receptors, Serotonin | 1994 |
Assessment of the health effects of chemicals in humans: II. Construction of an adverse effects database for QSAR modeling.
Topics: Adverse Drug Reaction Reporting Systems; Artificial Intelligence; Computers; Databases, Factual; Drug Prescriptions; Drug-Related Side Effects and Adverse Reactions; Endpoint Determination; Models, Molecular; Quantitative Structure-Activity Relationship; Software; United States; United States Food and Drug Administration | 2004 |
Chemical genetics reveals a complex functional ground state of neural stem cells.
Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells | 2007 |
Relationship between brain tissue partitioning and microemulsion retention factors of CNS drugs.
Topics: Brain; Central Nervous System; Chromatography, Liquid; Emulsions; Mass Spectrometry | 2009 |
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
Topics: Animals; Antimalarials; ATP Binding Cassette Transporter, Subfamily B, Member 1; Chromosome Mapping; Crosses, Genetic; Dihydroergotamine; Drug Design; Drug Resistance; Humans; Inhibitory Concentration 50; Mutation; Plasmodium falciparum; Quantitative Trait Loci; Transfection | 2009 |
Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Bile Acids and Salts; Cell Line; Chemical and Drug Induced Liver Injury; Humans; Quantitative Structure-Activity Relationship | 2012 |
Which metabolites circulate?
Topics: Humans; Metabolic Clearance Rate; Pharmaceutical Preparations | 2013 |
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Transport; Chemical and Drug Induced Liver Injury; Cluster Analysis; Drug-Related Side Effects and Adverse Reactions; Humans; Liver; Male; Multidrug Resistance-Associated Proteins; Pharmacokinetics; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Risk Assessment; Risk Factors; Toxicity Tests | 2013 |
Comparison of the accuracy of experimental and predicted pKa values of basic and acidic compounds.
Topics: Chemistry, Pharmaceutical; Forecasting; Hydrogen-Ion Concentration; Pharmaceutical Preparations; Random Allocation | 2014 |
Increasing the Endoplasmic Reticulum Pool of the F508del Allele of the Cystic Fibrosis Transmembrane Conductance Regulator Leads to Greater Folding Correction by Small Molecule Therapeutics.
Topics: Alleles; Benzoates; Cells, Cultured; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Endoplasmic Reticulum; Furans; Gene Deletion; HEK293 Cells; HeLa Cells; High-Throughput Screening Assays; Humans; Hydroxamic Acids; Microscopy, Fluorescence; Protein Folding; Protein Structure, Tertiary; Pyrazoles; RNA, Messenger; Small Molecule Libraries; Ubiquitination; Vorinostat | 2016 |
Crossover reaction between haloperidol and amoxapine for NMS.
Topics: Aged; Amoxapine; Depressive Disorder; Dose-Response Relationship, Drug; Drug Therapy, Combination; Female; Haloperidol; Humans; Neuroleptic Malignant Syndrome | 1991 |
ECT in genetically confirmed Huntington's disease.
Topics: Aged; Alleles; Amoxapine; Combined Modality Therapy; Depressive Disorder; Electroconvulsive Therapy; Gene Amplification; Haloperidol; Humans; Huntington Disease; Male; Psychotropic Drugs; Selective Serotonin Reuptake Inhibitors; Trinucleotide Repeats | 1996 |