haloperidol has been researched along with 8-(3-chlorostyryl)caffeine in 4 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 1 (25.00) | 18.2507 |
2000's | 3 (75.00) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J | 1 |
Austin, CP; Fidock, DA; Hayton, K; Huang, R; Inglese, J; Jiang, H; Johnson, RL; Su, XZ; Wellems, TE; Wichterman, J; Yuan, J | 1 |
Dorsa, DM; Ward, RP | 1 |
Beilstein, MA; Chen, JF; Cuellar, B; Fink, JS; Grandy, DK; Hackett, E; Impagnatiello, F; Low, MJ; Moratalla, R; Ongini, E; Rubinstein, M; Schwarzschild, MA | 1 |
4 other study(ies) available for haloperidol and 8-(3-chlorostyryl)caffeine
Article | Year |
---|---|
Chemical genetics reveals a complex functional ground state of neural stem cells.
Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells | 2007 |
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
Topics: Animals; Antimalarials; ATP Binding Cassette Transporter, Subfamily B, Member 1; Chromosome Mapping; Crosses, Genetic; Dihydroergotamine; Drug Design; Drug Resistance; Humans; Inhibitory Concentration 50; Mutation; Plasmodium falciparum; Quantitative Trait Loci; Transfection | 2009 |
Molecular and behavioral effects mediated by Gs-coupled adenosine A2a, but not serotonin 5-Ht4 or 5-Ht6 receptors following antipsychotic administration.
Topics: Adenosine; Animals; Antipsychotic Agents; Behavior, Animal; Caffeine; Catalepsy; Clozapine; Corpus Striatum; Cyclic AMP; Dopamine D2 Receptor Antagonists; Gene Expression Regulation; Genes, fos; GTP-Binding Protein alpha Subunits, Gs; Haloperidol; Nerve Tissue Proteins; Neurons; Rats; Rats, Sprague-Dawley; Receptor, Adenosine A2A; Receptors, Dopamine D2; Receptors, Purinergic P1; Receptors, Serotonin; Receptors, Serotonin, 5-HT4; Second Messenger Systems; Serotonin; Serotonin Antagonists; Theophylline | 1999 |
The role of the D(2) dopamine receptor (D(2)R) in A(2A) adenosine receptor (A(2A)R)-mediated behavioral and cellular responses as revealed by A(2A) and D(2) receptor knockout mice.
Topics: Adenosine; Amphetamines; Animals; Caffeine; Catalepsy; Corpus Striatum; Dopamine Antagonists; Enkephalins; Gene Expression; Haloperidol; Mice; Mice, Inbred C57BL; Mice, Knockout; Motor Activity; Phenethylamines; Purinergic P1 Receptor Agonists; Purinergic P1 Receptor Antagonists; Receptor, Adenosine A2A; Receptors, Dopamine D1; Receptors, Dopamine D2; Receptors, Purinergic P1; RNA, Messenger | 2001 |