h-89 has been researched along with pyrazolanthrone* in 6 studies
6 other study(ies) available for h-89 and pyrazolanthrone
Article | Year |
---|---|
[Protein kinase A inhibitor H-89 blocks polyploidization of SP600125-induced CMK cells by regulating phosphorylation of ribosomal protein S6 kinase 1].
Objective To investigate the regulatory effect of post-translation modification of ribosomal protein S6 kinase 1 (S6K1) on the polyploidization of megakaryocytes. Methods SP600125, a c-Jun N-terminal kinase (JNK) inhibitor, and H-89, a cAMP-dependent protein kinase (PKA) inhibitor, were used to treat CMK cells separately or in combination. With propidium iodide (PI) to dye DNA in the treated cells, the relative DNA content was detected by flow cytometry, and then the DNA polyploidy was analyzed. The change of expression and phosphorylation of ribosomal protein S6 kinase 1 (S6K1), an important mammalian target of rapamycin (mTOR) downstream target molecule, was analyzed by Western blotting. Molecular docking study and kinase activity assay were performed to analyze the combination of H-89 with S6K1 and the effect of H-89 on the activity of S6K1 kinase. Results SP600125 induced CMK cell polyploidization in a time-dependent and dose-dependent manner. At the same time, it increased the phosphorylation of S6K1 at Thr421/Ser424 and decreased the phosphorylation of S6K1 at Thr389. H-89 not only blocked polyploidization, but also decreased the phosphorylation of S6K1 at Thr421/Ser424 and increased the phosphorylation of S6K1 at Thr389. Molecular docking and kinase activity assay showed that H-89 occupied the ATP binding sites of S6K1 and inhibited its activity. Noticeably, both H-89 and SP600125 inhibited the activity of PKA. Moreover, the two drugs further inhibited the activity of PKA when used together. Therefore, these data indicated that H-89 blocked the SP600125-induced polyploidization of CMK cells mainly by changing S6K1 phosphorylation state, rather than its inhibitory effect on PKA. Conclusion H-89 can block the polyploidization of SP600125-induced CMK cells by regulating S6K1 phosphorylation state. Topics: Anthracenes; Cell Line; Humans; Isoquinolines; Megakaryocytes; Molecular Docking Simulation; Phosphorylation; Polyploidy; Protein Kinase Inhibitors; Ribosomal Protein S6 Kinases, 90-kDa; Sulfonamides | 2016 |
[SP600125-induced polyploidization of megakaryocytic leukemia cell lines by ribosomal protein S6 kinase 1 depends on the degree of cell differentiation].
Objective To investigate regulatory role of ribosomal protein S6 kinase 1 (S6K1) in the polyploidization of different megakaryocytic leukemia cell lines at the different differentiation stages. Methods Megakaryocytic leukemia cell lines (Dami, Meg-01 and HEL cells) were induced towards polyploidization by SP600125, a c-Jun N-terminal kinase (JNK) inhibitor. The SP600125-inducing process was blocked by H-89, a cAMP-dependent protein kinase (PKA) inhibitor. The phenotype (CD41a, CD42a and CD42b) and DNA ploidy were detected by flow cytometry. The expression and phosphorylation of S6K1 and related proteins were detected by Western blotting. Results SP600125 induced polyploidization and increased the phosphorylation of eukaryotic initiation factor 4E binding protein 1 (4E-BP1) in Dami, Meg-01 and HEL cells. However, the effect of SP600125 on polyploidization of the three cell lines was different, with the strongest effect on Dami cells and the weakest on Meg-01 cells. Moreover, SP600125 increased the phosphorylation of S6K1 Thr421/Ser424 and decreased the phosphorylation of Thr389 in Dami cells. However, it only increased the phosphorylation of Thr389 in HEL cells and had no effect on the phosphorylation of S6K1 in Meg-01 cells. Interestingly, H-89 only partially blocked the polyploidization of Dami cells, although it decreased the phosphorylation of 4E-BP1 in all SP600125-induced three cell lines. Noticeably, H-89 decreased the phosphorylation of S6K1 Thr421/Ser424 and increased the phosphorylation of Thr389 in Dami cells. However, H-89 had no effect on the phosphorylation of Thr421/Ser424, although it increased the phosphorylation of Thr389 in Meg-01 and HEL cells. Phenotypic analysis showed that the three cell lines were at different levels of differentiation in megakaryocytic lineage, with the highest differentiation in Dami and the lowest in Meg-01 cells. Conclusion SP600125-induced polyploidization of megakaryocytic leukemia cell lines is dependent on the effect of SP600125 on phosphorylation of S6K1 in cell lines at the different differentiation stages. Topics: Anthracenes; Cell Differentiation; Cell Line; Humans; Isoquinolines; Leukemia, Megakaryoblastic, Acute; Megakaryocytes; Phosphorylation; Polyploidy; Ribosomal Protein S6 Kinases; Sulfonamides | 2016 |
Phosphorylation of ribosomal protein S6 kinase 1 at Thr421/Ser424 and dephosphorylation at Thr389 regulates SP600125-induced polyploidization of megakaryocytic cell lines.
Megakaryocytes (MKs) are one of the few cell types that become polyploid; however, the mechanisms by which these cells are designated to become polyploid are not fully understood. In this investigation, we successfully established two relatively synchronous polyploid cell models by inducing Dami and CMK cells with SP600125. We found that SP600125 induced the polyploidization of Dami and CMK cells, concomitant with the phosphorylation of ribosomal protein S6 kinase 1 (S6K1) at Thr421/Ser424 and dephosphorylation at Thr389. The polyploidization was partially blocked by H-89, a cAMP-dependent protein kinase (PKA) inhibitor, through direct binding to S6K1, leading to dephosphorylation at Thr421/Ser424 and phosphorylation at Thr389, independent of PKA. Overexpression of a rapamycin-resistant mutant of S6K1 further enhanced the inhibitory effect of LY294002 on the SP600125-induced polyploidization of Dami and CMK cells. SP600125 also induced the polyploidization of Meg-01 cells, which are derived from a patient with chronic myelogenous leukemia, without causing a significant change in S6K1 phosphorylation. Additionally, SP600125 induced the polyploidization of HEL cells, which are derived from a patient with erythroleukemia, and phosphorylation at Thr389 of S6K1 was detected. However, the polyploidization of both Meg-01 cells and HEL cells as a result of SP600125 treatment was lower than that of SP600125-induced Dami and CMK cells, and it was not blocked by H-89 despite the increased phosphorylation of S6K1 at Thr389 in both cell lines in response to H-89. Given that the Dami and CMK cell lines were derived from patients with acute megakaryocytic leukemia (AMKL) and expressed high levels of platelet-specific antigens, our data suggested that SP600125-induced polyploidization is cell-type specific, that these cell lines were more differentiated, and that phosphorylation at Thr421/Ser424 and dephosphorylation at Thr389 of S6K1 may play an important role in the SP600125-induced polyploidization of these cell lines synergistically with other signaling pathways. Topics: Anthracenes; Cell Line; Cell Proliferation; Cyclic AMP-Dependent Protein Kinases; Dose-Response Relationship, Drug; Humans; Isoquinolines; Megakaryocytes; Models, Molecular; Molecular Conformation; Mutation; Phosphorylation; Polyploidy; Protein Binding; Protein Interaction Domains and Motifs; Protein Kinase Inhibitors; Ribosomal Protein S6 Kinases, 70-kDa; Sulfonamides | 2014 |
Effects of lipoic acid on lipolysis in 3T3-L1 adipocytes.
Lipoic acid (LA) is a naturally occurring compound with beneficial effects on obesity. The aim of this study was to evaluate its effects on lipolysis in 3T3-L1 adipocytes and the mechanisms involved. Our results revealed that LA induced a dose- and time-dependent lipolytic action, which was reversed by pretreatment with the c-Jun N-terminal kinase inhibitor SP600125, the PKA inhibitor H89, and the AMP-activated protein kinase activator AICAR. In contrast, the PI3K/Akt inhibitor LY294002 and the PDE3B antagonist cilostamide enhanced LA-induced lipolysis. LA treatment for 1 h did not modify total protein content of hormone-sensitive lipase (HSL) but significantly increased the phosphorylation of HSL at Ser(563) and at Ser(660), which was reversed by H89. LA treatment also induced a marked increase in PKA-mediated perilipin phosphorylation. LA did not significantly modify the protein levels of adipose triglyceride lipase or its activator comparative gene identification 58 (CGI-58) and inhibitor G(0)/G(1) switch gene 2 (G0S2). Furthermore, LA caused a significant inhibition of adipose-specific phospholipase A2 (AdPLA) protein and mRNA levels in parallel with a decrease in the amount of prostaglandin E(2) released and an increase in cAMP content. Together, these data suggest that the lipolytic actions of LA are mainly mediated by phosphorylation of HSL through cAMP-mediated activation of protein kinase A probably through the inhibition of AdPLA and prostaglandin E(2). Topics: 3T3-L1 Cells; Aminoimidazole Carboxamide; AMP-Activated Protein Kinases; Animals; Anthracenes; Carrier Proteins; Chromones; Isoquinolines; JNK Mitogen-Activated Protein Kinases; Lipase; Lipolysis; Mice; Morpholines; Perilipin-1; Phosphoproteins; Phosphorylation; Quinolones; Ribonucleotides; Sterol Esterase; Sulfonamides; Thioctic Acid | 2012 |
Regulation of the intracellular localization of Foxo3a by stress-activated protein kinase signaling pathways in skeletal muscle cells.
Muscle atrophy is a debilitating process associated with many chronic wasting diseases, like cancer, diabetes, sepsis, and renal failure. Rapid loss of muscle mass occurs mainly through the activation of protein breakdown by the ubiquitin proteasome pathway. Foxo3a transcription factor is critical for muscle atrophy, since it activates the expression of ubiquitin ligase Atrogin-1. In several models of atrophy, inhibition of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway induces nuclear import of Foxo3a through an Akt-dependent process. This study aimed to identify signaling pathways involved in the control of Foxo3a nuclear translocation in muscle cells. We observed that after nuclear import of Foxo3a by PI3K/Akt pathway inhibition, activation of stress-activated protein kinase (SAPK) pathways induced nuclear export of Foxo3a through CRM1. This mechanism involved the c-Jun NH(2)-terminal kinase (JNK) signaling pathway and was independent of Akt. Likewise, we showed that inhibition of p38 induced a massive nuclear relocalization of Foxo3a. Our results thus suggest that SAPKs are involved in the control of Foxo3a nucleocytoplasmic translocation in C2C12 cells. Moreover, activation of SAPKs decreases the expression of Atrogin-1, and stable C2C12 myotubes, in which the p38 pathway is constitutively activated, present partial protection against atrophy. Topics: Animals; Anthracenes; Cell Line; Cell Nucleus; Chromones; Exportin 1 Protein; Forkhead Box Protein O3; Forkhead Transcription Factors; Humans; Isoquinolines; Karyopherins; MAP Kinase Kinase 3; MAP Kinase Kinase 4; Mice; Mitogen-Activated Protein Kinase Kinases; Morpholines; Muscle Cells; Muscle Fibers, Skeletal; Muscle Proteins; Muscular Atrophy; Oxidative Stress; p38 Mitogen-Activated Protein Kinases; Phosphatidylinositol 3-Kinases; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Receptors, Cytoplasmic and Nuclear; Signal Transduction; SKP Cullin F-Box Protein Ligases; Sulfonamides; Thiophenes; Transfection | 2010 |
Involvement of regulatory elements on corticotropin-releasing factor gene promoter in hypothalamic 4B cells.
Corticotropin-releasing factor (CRF) plays a central role in controlling the hypothalamic-pituitary-adrenal (HPA) axis during stressful periods. CRF is synthesized and secreted in the hypothalamic paraventricular nucleus (PVN) in response to stress, and stimulates ACTH in the pituitary corticotrophs. ACTH stimulates the release of glucocorticoids from the adrenal glands, and glucocorticoids sequentially inhibit hypothalamic PVN production of CRF and pituitary production of ACTH. The effects of glucocorticoids on CRF gene regulation, however, are possibly tissue-specific since glucocorticoids stimulate CRF gene expression in the placenta and the bed nucleus of the stria terminalis, while they inhibit it in the hypothalamus.. In a hypothalamic cell line, 4B, we found that forskolin-stimulated CRF gene transcription was mediated by a functional cAMP-response element (CRE), which included -220 to -233 bp on the CRF 5'-promoter region. Protein kinase A, protein kinase C, and p38 mitogen-activated protein kinase pathways contributed to forskolin-induced transcriptional activity of CRF in hypothalamic 4B cells. Glucocorticoid-dependent repression of cAMP-stimulated transcriptional activity of CRF was localized to promoter sequences between -278 and -233 bp, which included a glucocorticoid regulatory element and a serum response element.. Taken together, these findings indicate that the regulatory elements, including CRE, negative glucocorticoid regulatory element, and a serum response element on the promoter, contribute to the regulation of CRF gene transcription in hypothalamic 4B cells. Topics: Anthracenes; Cell Line; Chromones; Colforsin; Corticotropin-Releasing Hormone; Dexamethasone; Flavonoids; Genes, Reporter; Humans; Hypothalamus; Imidazoles; Isoquinolines; Morpholines; Promoter Regions, Genetic; Protein Kinase Inhibitors; Pyridines; Regulatory Elements, Transcriptional; Sequence Deletion; Sulfonamides; Transfection | 2008 |