h-89 has been researched along with osteum* in 1 studies
1 other study(ies) available for h-89 and osteum
Article | Year |
---|---|
Cellular mechanism of sodium oleate-stimulated secretion of cholecystokinin and secretin.
Long-chain fatty acids are potent stimulants of secretin and CCK release. The cellular mechanisms of fatty acid-stimulated secretion of these two hormones are not clear. We studied the stimulatory effect and mechanism of sodium oleate (SO) on secretin- and CCK-producing cells. SO stimulated the release of secretin or CCK from isolated rat mucosal cell preparations enriched in either secretin- or CCK-producing cells, respectively. SO also time- and dose-dependently stimulated secretin and CCK release from STC-1 cells. In STC-1 cells, SO-stimulated secretin and CCK release was potentiated by IBMX and inhibited by a protein kinase A-selective inhibitor and a cAMP-specific antagonist. SO-stimulated releases of the two hormones were also inhibited by downregulation or inhibitors of protein kinase C, a calmodulin antagonist and an inhibitor of calmodulin-dependent protein kinase II. Chelating of extracellular Ca(2+) or addition of an L-type calcium channel blocker diminished SO-stimulated hormone releases. SO caused an increase in intracellular Ca(2+) concentration that was partially reversed by diltiazem but had no effect on production of cAMP, cGMP, or inositol-1,4,5-triphosphate. These results indicate that SO acts on secretin- and CCK-producing cells. Its stimulatory effect is potentiated by endogenous protein kinase A and mediated by activation of Ca(2+) influx through the L-type channels and of protein kinase C and Ca(2+)/calmodulin-dependent protein kinase II. Topics: 1-Methyl-3-isobutylxanthine; Animals; Biological Transport; Calcium; Calcium Channel Blockers; Calcium Channels, L-Type; Calcium-Calmodulin-Dependent Protein Kinase Type 2; Calcium-Calmodulin-Dependent Protein Kinases; Calmodulin; Cell Fractionation; Cells, Cultured; Chelating Agents; Cholecystokinin; Cyclic AMP-Dependent Protein Kinases; Dose-Response Relationship, Drug; Duodenum; Egtazic Acid; Enzyme Inhibitors; Intestinal Mucosa; Isoquinolines; Oleic Acid; Phosphodiesterase Inhibitors; Protein Kinase C; Rats; Secretin; Sulfonamides; Tetradecanoylphorbol Acetate | 2000 |