h-89 has been researched along with nobiletin* in 3 studies
3 other study(ies) available for h-89 and nobiletin
Article | Year |
---|---|
Nobiletin Stimulates Chloride Secretion in Human Bronchial Epithelia via a cAMP/PKA-Dependent Pathway.
Nobiletin, a citrus flavonoid isolated from tangerines, alters ion transport functions in intestinal epithelia, and has antagonistic effects on eosinophilic airway inflammation of asthmatic rats. The present study examined the effects of nobiletin on basal short-circuit current (I(SC)) in a human bronchial epithelial cell line (16HBE14o-), and characterized the signal transduction pathways that allowed nobiletin to regulate electrolyte transport.. The I(SC) measurement technique was used for transepithelial electrical measurements. Intracellular calcium ([Ca(2+)]i) and cAMP were also quantified.. Nobiletin stimulated a concentration-dependent increase in I(SC), which was due to Cl- secretion. The increase in I(SC) was inhibited by a cystic fibrosis transmembrane conductance regulator inhibitor (CFTR(inh)-172), but not by 4,4'-diisothiocyano-stilbene-2,2'-disulphonic acid (DIDS), Chromanol 293B, clotrimazole, or TRAM-34. Nobiletin-stimulated I(SC) was also sensitive to a protein kinase A (PKA) inhibitor, H89, and an adenylate cyclase inhibitor, MDL-12330A. Nobiletin could not stimulate any increase in I(SC) in a cystic fibrosis (CF) cell line, CFBE41o-, which lacked a functional CFTR. Nobiletin stimulated a real-time increase in cAMP, but not [Ca(2+)]i.. Nobiletin stimulated transepithelial Cl- secretion across human bronchial epithelia. The mechanisms involved activation of adenylate cyclase- and cAMP/PKA-dependent pathways, leading to activation of apical CFTR Cl- channels. Topics: Adenylyl Cyclases; Bronchi; Calcium; Cell Line; Chlorides; Cyclic AMP; Cyclic AMP-Dependent Protein Kinases; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Epithelial Cells; Flavones; Humans; Imines; Ion Transport; Isoquinolines; Respiratory Mucosa; Signal Transduction; Sulfonamides | 2015 |
Nobiletin, a citrus flavonoid with neurotrophic action, augments protein kinase A-mediated phosphorylation of the AMPA receptor subunit, GluR1, and the postsynaptic receptor response to glutamate in murine hippocampus.
Nobiletin isolated from citrus peels prevents bulbectomy- and amyloid-beta protein-induced memory impairment in rodents. In the present study, using combined methods of biochemistry and electrophysiology, we examined the effects of nobiletin on phosphorylation of GluR1 receptor, the subunit of alpha-amino-3-hydroxy-5-methyl-D-aspartate (AMPA) receptors, and the receptor-mediated synaptic transmission in the hippocampus, a region implicated in memory formation, in culture and/or in slices. Western blot analysis showed that nobiletin-stimulated phosphorylation of multiple protein kinase A (PKA) substrates at 10 min following the treatment in cultured hippocampal neurons. In the cultured neurons, this natural compound also increased not only PKA activity, but also phosphorylation of GluR1 receptor at a PKA phosphorylation site, Ser 845, which has been demonstrated to be critical for synaptic plasticity, including enhancement of postsynaptic glutamate response, and important for spatial memory in vivo. The increased phosphorylation of GluR1 receptor at Ser 845 was abolished by H89 (N-(2-[p-bromocinnamylamino]ethyl)-5-isoquinolinesulfonamide hydrochloride), the PKA inhibitor, but not U0126 (1,4-diamino-2,3-dicyano-1,4-bis (2-aminophenylthio) butadiene), the mitogen-activated protein kinase/ERK kinase (MEK) inhibitor, in the cultured neurons. An increment of the phosphorylation of GluR1 receptor at Ser 845 was induced by nobiletin in the hippocampal slices as well. Furthermore, our electrophysiological analysis showed that nobiletin potentiated the AMPA receptor-mediated synaptic transmission at Schaffer collateral-CA1 pyramidal cell synapses in the hippocampal slices. This potentiation induced by the natural compound was not accompanied by the changes in paired-pulse ratio, and partially occluded the long-term potentiation, indicating the possible involvement of the postsynaptic mechanism. These findings suggest that nobiletin probably up-regulates synaptic transmission via the postsynaptic AMPA receptors at least partially by stimulation of PKA-mediated phosphorylation of GluR1 receptor in the hippocampus. Topics: Action Potentials; Animals; Butadienes; Cells, Cultured; Citrus; Cyclic AMP-Dependent Protein Kinases; Flavones; Fruit; Glutamic Acid; Hippocampus; Isoquinolines; MAP Kinase Kinase Kinases; Mice; Neurons; Nitriles; Nootropic Agents; Phosphorylation; Protein Kinase Inhibitors; Rats; Rats, Sprague-Dawley; Receptors, AMPA; Serine; Sulfonamides; Synaptic Transmission; Time Factors; Tissue Culture Techniques | 2008 |
A citrus polymethoxy flavonoid, nobiletin inhibits sebum production and sebocyte proliferation, and augments sebum excretion in hamsters.
Acne vulgaris is characterized by excess sebum production, and apart from all-trans retinoic acid (atRA) or 13-cis retinoic acid (13-cisRA), there are few effective agents for acne therapy that directly suppresses sebaceous lipogenesis. In this study, we demonstrated that topical application of a citrus polymethoxy flavonoid, nobiletin, to hamster auricles decreased skin surface triacylglycerols (TG) level and the size of sebaceous glands along with inhibition of diacylglycerol acyltransferase (DGAT)-dependent TG synthesis and sebocyte proliferation. The inhibitory actions were similar to that observed with atRA and 13-cisRA in hamster sebocytes. The antilipogenic and antiproliferative actions of nobiletin were also reproduced in UVB (5.4 kJ/m2)-irradiated hamsters, which showed aberrant enhancement of sebum accumulation and sebaceous enlargement. Furthermore, nobiletin, but not 13-cisRA, augmented sebum excretion along with increases in intracellular cAMP level, protein kinase A (PKA) activation, and apoptosis-independent phosphatidylserine (PS) externalization in cell membrane. These phenomena were reproduced by forskolin and inhibited by a PKA inhibitor, H-89. These results provide early evidence that nobiletin is an effective candidate for acne therapy through mechanisms that include the inhibition of DGAT-dependent TG synthesis and sebocyte proliferation, and the progression of apoptosis-independent and PS-externalization-dependent sebum excretion by PKA activation. Topics: Animals; Antioxidants; Cell Membrane; Cell Proliferation; Cricetinae; Cyclic AMP-Dependent Protein Kinases; Diacylglycerol O-Acyltransferase; Flavones; Flavonoids; Isoquinolines; Models, Biological; Phosphatidylserines; Sebum; Sulfonamides; Tretinoin; Triglycerides | 2007 |