h-89 has been researched along with fenamic-acid* in 2 studies
2 other study(ies) available for h-89 and fenamic-acid
Article | Year |
---|---|
cAMP-dependent fluid secretion in rat inner medullary collecting ducts.
We used an unambiguous in vitro method to determine if inner medullary collecting ducts (IMCD) have intrinsic capacities to absorb and secrete solutes and fluid in an isotonic medium. IMCD(1), IMCD(2), and IMCD(3) were dissected from kidneys of young Sprague-Dawley rats. 8-Bromo-3',5'-cyclic monophosphate (8-BrcAMP) stimulated lumen formation and progressive dilation in all IMCD subsegments; lumen formation was greatest in IMCD(1.) Benzamil potentiated the rate of lumen expansion in response to 8-BrcAMP. Fluid entered tubule lumens by transcellular secretion rather than simple translocation of intracellular fluid. Secreted lumen solutes were osmometrically active. Inhibition of protein kinase A with H-89 and Rp diastereomer of adenosine 3',5'-cyclic monophosphorothioate blocked fluid secretion. The rate of lumen expansion was reduced by the selective addition of ouabain, barium, diphenyl-2-carboxylate, bumetanide, glybenclamide, or DIDS, or reduction of extracellular Cl(-). We conclude that IMCD absorb and secrete electrolytes and fluid in vitro and that secretion is accelerated by cAMP. We suggest that salt and fluid secretion by the terminal portions of the renal collecting system may have a role in modulating the composition and volume of the final urine. Topics: 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid; 8-Bromo Cyclic Adenosine Monophosphate; Amiloride; Animals; Barium; Biological Transport; Blood Proteins; Calcium Channel Blockers; Chlorides; Cyclic AMP; Cyclic AMP-Dependent Protein Kinases; Cystic Fibrosis Transmembrane Conductance Regulator; Dissection; Enzyme Inhibitors; Glyburide; Hypoglycemic Agents; Isoquinolines; Kidney Medulla; Kidney Tubules, Collecting; Male; ortho-Aminobenzoates; Ouabain; Rats; Rats, Sprague-Dawley; Sodium Chloride; Sulfonamides; Vanadates; Water; Water-Electrolyte Balance | 2001 |
Role of chloride and inhibitory action of inorganic nitrate on gonadotropin-stimulated steroidogenesis in mouse Leydig tumor cells.
The involvement of adenylate cyclase-cyclic adenosine monophosphate (AC-cAMP) in gonadotropin-stimulated testicular steroidogenesis is well known. Little is known about the role of guanylate cyclase-cyclic guanosine monophosphate (GC-cGMP) or early chloride conductance stimulated by gonadotropins in steroidogenesis. Human chorionic gonadotropin (hCG) 1 IU/L caused significant androgen secretion without a discernible effect on cAMP production. Despite negligible intracellular cAMP, the protein kinase A inhibitor H89 blocked basal and hCG-stimulated steroidogenesis. The GC inhibitors methylene blue (MB) and LY83583 decreased androgen secretion, but hCG did not stimulate cGMP production and there was not a steroidogenic response to exogenous cGMP. A chloride-channel inhibitor, diphenylamine-2-carboxylate (DPC), at concentrations up to 0.6 mmol/L stimulated basal steroid secretion and hCG 10 IU/L stimulated cAMP production, but higher concentrations had an inhibitory effect. Substitution of chloride by gluconate enhanced basal steroid secretion, but nitrate completely abolished the effect of 1 IU/L hCG on androgen secretion, which could be partially overcome by increasing the gonadotropin concentration. In conclusion, chloride, perhaps by activating AC-cAMP, mediates the steroidogenic action of gonadotropins in mouse Leydig tumor cells (MLTC-1). Inorganic nitrate probably inhibited steroidogenesis via conversion to nitric oxide (NO) without involving the GC-cGMP pathway. Nevertheless, the results obtained with GC inhibitors suggest a role for the GC-cGMP pathway in Leydig cell steroidogenesis. Topics: Aminoquinolines; Androgens; Animals; Calcium Channel Blockers; Chlorides; Chorionic Gonadotropin; Cyclic AMP; Cyclic AMP-Dependent Protein Kinases; Cyclic GMP; Enzyme Inhibitors; Gonadotropins; Guanylate Cyclase; Isoquinolines; Leydig Cell Tumor; Mice; Nitrates; ortho-Aminobenzoates; Sulfonamides; Testosterone | 1999 |