h-89 and capsazepine

h-89 has been researched along with capsazepine* in 2 studies

Other Studies

2 other study(ies) available for h-89 and capsazepine

ArticleYear
Regulation of particulate matter-induced mucin secretion by transient receptor potential vanilloid 1 receptors.
    Inflammation, 2012, Volume: 35, Issue:6

    Exposure to airborne particulate matter (PM) is a worldwide health problem. Previous studies have reported that PMs induced depolarizing currents and increased intracellular Ca(2+) in human bronchial epithelial cells. Ca(2+) plays important role in the regulation of mucus exocytosis, and mucin hypersecretion is a key pathological feature of inflammatory respiratory diseases. To explore more mechanisms underlying PM toxicity, we measured PM-induced mucin secretion in human bronchial epithelial (16HBE) cells. MUC5AC secretion and cyclic adenosine monophosphate (cAMP) level were detected by ELISA. Transient receptor potential vanilloid (TRPV)1 inward currents were examined by electrophysiology. Ca(2+) concentration was assessed by laser scanning confocal microscope. Exposure of PMs to 16HBE cells was found to induce mucin secretion, as a consequence of sustained Ca(2+) influx and cAMP increase through TRPV1 receptors. Mucin secretion was completely inhibited by TRPV1 receptor antagonist capsazepine. Removal of Ca(2+) by Ca(2+) chelator BAPTA or inhibition of protein kinase A (PKA) by the PKA inhibitors H-89 each partially reduced PC(2)s-induced mucin secretion. The combination of BAPTA and H-89 completely prevented mucin secretion mediated by PMs. These results suggest that PM induces mucin secretion through Ca(2+) influx and cAMP/PKA pathway by TRPV1 receptors in human bronchial epithelial cells, thereby providing a potential mechanism to reduce PM toxicity.

    Topics: Air Pollutants; Bronchi; Calcium; Capsaicin; Cell Line, Transformed; Chelating Agents; Cyclic AMP; Cyclic AMP-Dependent Protein Kinases; Egtazic Acid; Environmental Exposure; Epithelial Cells; Exocytosis; Humans; Isoquinolines; Microscopy, Confocal; Mucin 5AC; Mucins; Particulate Matter; Protein Kinase Inhibitors; Sulfonamides; TRPV Cation Channels

2012
Protease-activated receptor-2 activation exaggerates TRPV1-mediated cough in guinea pigs.
    Journal of applied physiology (Bethesda, Md. : 1985), 2006, Volume: 101, Issue:2

    A lowered threshold to the cough response frequently accompanies chronic airway inflammatory conditions. However, the mechanism(s) that from chronic inflammation results in a lowered cough threshold is poorly understood. Irritant agents, including capsaicin, resiniferatoxin, and citric acid, elicit cough in humans and in experimental animals through the activation of the transient receptor potential vanilloid 1 (TRPV1). Protease-activated receptor-2 (PAR2) activation plays a role in inflammation and sensitizes TRPV1 in cultured sensory neurons by a PKC-dependent pathway. Here, we have investigated whether PAR2 activation exaggerates TRPV1-dependent cough in guinea pigs and whether protein kinases are involved in the PAR2-induced cough modulation. Aerosolized PAR2 agonists (PAR2-activating peptide and trypsin) did not produce any cough per se. However, they potentiated citric acid- and resiniferatoxin-induced cough, an effect that was completely prevented by the TRPV1 receptor antagonist capsazepine. In contrast, cough induced by hypertonic saline, a stimulus that provokes cough in a TRPV1-independent manner, was not modified by aerosolized PAR2 agonists. The PKC inhibitor GF-109203X, the PKA inhibitor H-89, and the cyclooxygenase inhibitor indomethacin did not affect cough induced by TRPV1 agonists, but abated the exaggeration of this response produced by PAR2 agonists. In conclusion, PAR2 stimulation exaggerates TRPV1-dependent cough by activation of diverse mechanism(s), including PKC, PKA, and prostanoid release. PAR2 activation, by sensitizing TRPV1 in primary sensory neurons, may play a role in the exaggerated cough observed in certain airways inflammatory diseases such as asthma and chronic obstructive pulmonary disease.

    Topics: Animals; Capsaicin; Citric Acid; Cough; Cyclic AMP-Dependent Protein Kinases; Cyclooxygenase Inhibitors; Diterpenes; Guinea Pigs; Indomethacin; Inflammation; Isoquinolines; Male; Neurons, Afferent; Protein Kinase C; Protein Kinase Inhibitors; Receptor, PAR-2; Saline Solution, Hypertonic; Sulfonamides; TRPV Cation Channels; Trypsin

2006