h-89 has been researched along with butaprost* in 4 studies
4 other study(ies) available for h-89 and butaprost
Article | Year |
---|---|
Prostaglandin E2 release from astrocytes triggers gonadotropin-releasing hormone (GnRH) neuron firing via EP2 receptor activation.
Astrocytes in the hypothalamus release prostaglandin E(2) (PGE(2)) in response to cell-cell signaling initiated by neurons and glial cells. Upon release, PGE(2) stimulates the secretion of gonadotropin-releasing hormone (GnRH), the neuropeptide that controls reproduction, from hypothalamic neuroendocrine neurons. Whether this effect on GnRH secretion is accompanied by changes in the firing behavior of these neurons is unknown. Using patch-clamp recording we demonstrate that PGE(2) exerts a dose-dependent postsynaptic excitatory effect on GnRH neurons. These effects are mimicked by an EP2 receptor agonist and attenuated by protein kinase A (PKA) inhibitors. The acute blockade of prostaglandin synthesis by indomethacin (INDO) or the selective inhibition of astrocyte metabolism by fluoroacetate (FA) suppresses the spontaneous firing activity of GnRH neurons in brain slices. Similarly, GnRH neuronal activity is reduced in mice with impaired astrocytic PGE(2) release due to defective erbB signaling in astrocytes. These results indicate that astrocyte-to-neuron communication in the hypothalamus is essential for the activity of GnRH neurons and suggest that PGE(2) acts as a gliotransmitter within the GnRH neurosecretory system. Topics: Alprostadil; Animals; Astrocytes; Brain; Cyclic AMP-Dependent Protein Kinases; Cyclooxygenase Inhibitors; Dinoprostone; Dose-Response Relationship, Drug; Excitatory Postsynaptic Potentials; Female; Gonadotropin-Releasing Hormone; Green Fluorescent Proteins; Immunohistochemistry; Indomethacin; Isoquinolines; Male; Membrane Potentials; Mice; Mice, Transgenic; Neurons; Patch-Clamp Techniques; Protein Kinase Inhibitors; Receptors, Prostaglandin E, EP2 Subtype; Sulfonamides | 2011 |
Regulation of thrombomodulin expression in human vascular smooth muscle cells by COX-2-derived prostaglandins.
There is concern that cyclooxygenase (COX)-2 inhibitors may promote atherothrombosis by inhibiting vascular formation of prostacyclin (PGI2) and an increased thrombotic risk of COX-2 inhibitors has been reported. It is widely accepted that the prothrombotic effects of COX-2 inhibitors can be explained by the removal of platelet-inhibitory PGI2. Using microarray chip technology, we have previously demonstrated that thrombomodulin (TM) mRNA is upregulated in cultured human coronary artery smooth muscle cells by the stable prostacyclin mimetic iloprost. This study is the first to demonstrate a stimulation of the expression of functionally active thrombomodulin in human smooth muscle cells by prostaglandins, endogenously formed via the COX-2 pathway. Because TM is an important inhibitor of blood coagulation, these findings provide a novel platelet-independent mechanism to explain the prothrombotic effects of COX-2 inhibitors. The full text of this article is available online at http://circres.ahajournals.org. Topics: Alprostadil; Blood Coagulation; Bucladesine; Carotid Artery Diseases; Carotid Artery, Internal; Cells, Cultured; Colforsin; Coronary Vessels; Culture Media, Serum-Free; Cyclooxygenase 2; Cyclooxygenase 2 Inhibitors; Cyclooxygenase Inhibitors; Diclofenac; Dinoprostone; Epoprostenol; Etoricoxib; Gene Expression Profiling; Gene Expression Regulation; Humans; Iloprost; Isoquinolines; Mammary Arteries; Membrane Proteins; Models, Biological; Myocytes, Smooth Muscle; Oligonucleotide Array Sequence Analysis; Prostaglandin-Endoperoxide Synthases; Prostaglandins; Pyridines; Receptors, Prostaglandin; Receptors, Prostaglandin E; Receptors, Prostaglandin E, EP3 Subtype; RNA, Messenger; Saphenous Vein; Second Messenger Systems; Sulfonamides; Sulfones; Tetradecanoylphorbol Acetate; Thrombomodulin; Thrombophilia; Vasodilator Agents | 2005 |
Induction of hyaluronic acid synthase 2 (HAS2) in human vascular smooth muscle cells by vasodilatory prostaglandins.
Hyaluronic acid (HA) is a prominent constituent of the extracellular matrix of atherosclerotic vascular lesions in humans known to modulate vascular smooth muscle phenotype. The regulation of HA synthesis by vasodilatory prostaglandins was analyzed in human arterial smooth muscle cells (SMCs). The prostacyclin analogue, iloprost (100 nmol/L), markedly increased pericellular formation of HA coats and HA secretion into the cell culture medium in human arterial SMCs (8.7+/-1.6-fold). Expression of HA synthase 2 (HAS2) was determined by semiquantitative RT-PCR and found to be strongly upregulated at concentrations of iloprost between 1 and 100 nmol/L after 3 hours. Furthermore, endogenous cyclooxygenase-2 (COX2) activity was required for basal expression of HAS2 mRNA in SMCs in vitro. Total HA secretion in response to iloprost was markedly decreased by RNA interference (RNAi), specific for HAS2. In addition, siRNA targeting HAS2 strongly increased the spreading of human SMCs compared with mock-transfected cells. HAS2 mRNA levels were also stimulated by a selective prostacyclin receptor (IP) agonist, cicaprost (10 nmol/L), prostaglandin E(2) (10 nmol/L), and the EP(2) receptor agonist, butaprost (1 micromol/L). Induction of HAS2 mRNA and HA synthesis by prostaglandins was mimicked by stable cAMP analogues and forskolin. In human atherectomy specimens from the internal carotid artery, HA deposits and COX2 expression colocalized frequently. In addition, strong EP(2) receptor expression was detected in SMCs in HA-rich areas. Therefore, upregulation of HAS2 expression via EP(2) and IP receptors might contribute to the accumulation of HA during human atherosclerosis, thereby mediating proatherosclerotic functions of COX2. Topics: 6-Ketoprostaglandin F1 alpha; Acetophenones; Alprostadil; Arteriosclerosis; Becaplermin; Benzopyrans; Bucladesine; Carotid Artery Diseases; Carotid Artery, Internal; Cells, Cultured; Colforsin; Cyclic AMP; Cyclooxygenase 2; Enzyme Induction; Epoprostenol; Extracellular Matrix; Glucuronosyltransferase; Humans; Hyaluronan Synthases; Hyaluronic Acid; Iloprost; Indoles; Isoenzymes; Isoquinolines; Macrophages; Maleimides; Membrane Proteins; Muscle Cells; Muscle, Smooth, Vascular; Pertussis Toxin; Platelet-Derived Growth Factor; Prostaglandin-Endoperoxide Synthases; Proto-Oncogene Proteins c-sis; Receptors, Prostaglandin E; Receptors, Prostaglandin E, EP2 Subtype; RNA, Messenger; RNA, Small Interfering; Sulfonamides; Vasodilator Agents | 2004 |
Identification in human airways smooth muscle cells of the prostanoid receptor and signalling pathway through which PGE2 inhibits the release of GM-CSF.
1. The prostanoid receptor(s) on human airways smooth muscle (HASM) cells that mediates the inhibitory effect of PGE(2) on interleukin (IL)-1 beta-induced granulocyte/macrophage colony-stimulating factor (GM-CSF) release has been classified. 2. IL-1 beta evoked the release of GM-CSF from HASM cells, which was suppressed by PGE(2), 16,16-dimethyl PGE(2) (nonselective), misoprostol (EP(2)/EP(3)-selective), ONO-AE1-259 and butaprost (both EP(2)-selective) with pIC(50) values of 8.61, 7.13, 5.64, 8.79 and 5.43, respectively. EP-receptor agonists that have selectivity for the EP(1)-(17-phenyl-omega-trinor PGE(2)) and EP(3)-receptor (sulprostone) subtypes as well as cicaprost (IP-selective), PGD(2), PGF(2 alpha) and U-46619 (TP-selective) were poorly active or inactive at concentrations up to 10 microM. 3. AH 6809, a drug that can be used to selectively block EP(2)-receptors in HASM cells, antagonised the inhibitory effect of PGE(2), 16,16-dimethyl PGE(2) and ONO-AE1-259 with apparent pA(2) values of 5.85, 6.09 and 6.1 respectively. In contrast, the EP(4)-receptor antagonists, AH 23848B and L-161,982, failed to displace to the right the concentration-response curves that described the inhibition of GM-CSF release evoked by PGE(2) and ONO-AE1-259. 4. Inhibition of GM-CSF release by PGE(2) and 8-Br-cAMP was abolished in cells infected with an adenovirus vector encoding an inhibitor protein of cAMP-dependent protein kinase (PKA) but not by H-89, a purported small molecule inhibitor of PKA. 5. We conclude that prostanoid receptors of the EP(2)-subtype mediate the inhibitory effect of PGE(2) on GM-CSF release from HASM cells by recruiting a PKA-dependent pathway. In addition, the data illustrate that caution should be exercised when using H-89 in studies designed to assess the role of PKA in biological processes. Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; 8-Bromo Cyclic Adenosine Monophosphate; Adenoviridae; Adolescent; Adult; Aged; Alprostadil; Cell Survival; Cyclic AMP-Dependent Protein Kinases; Dinoprostone; Enzyme Inhibitors; Female; Gene Expression; Genetic Vectors; Granulocyte Colony-Stimulating Factor; Granulocyte-Macrophage Colony-Stimulating Factor; Humans; Indomethacin; Interleukin-1; Isoquinolines; Male; Middle Aged; Misoprostol; Myocytes, Smooth Muscle; Prostaglandins E, Synthetic; Protein Isoforms; Receptors, Prostaglandin E; Receptors, Prostaglandin E, EP2 Subtype; Receptors, Prostaglandin E, EP4 Subtype; Signal Transduction; Sulfonamides; Trachea; Xanthones | 2004 |