h-89 has been researched along with 8-aminoadenosine-cyclic-3--5--(hydrogen-phosphate)-5--ribofuranosyl-ester* in 1 studies
1 other study(ies) available for h-89 and 8-aminoadenosine-cyclic-3--5--(hydrogen-phosphate)-5--ribofuranosyl-ester
Article | Year |
---|---|
Vasodilation by the calcium-mobilizing messenger cyclic ADP-ribose.
In artery smooth muscle, adenylyl cyclase-coupled receptors such as beta-adrenoceptors evoke Ca(2+) signals, which open Ca(2+)-activated potassium (BK(Ca)) channels in the plasma membrane. Thus, blood pressure may be lowered, in part, through vasodilation due to membrane hyperpolarization. The Ca(2+) signal is evoked via ryanodine receptors (RyRs) in sarcoplasmic reticulum proximal to the plasma membrane. We show here that cyclic adenosine diphosphate-ribose (cADPR), by activating RyRs, mediates, in part, hyperpolarization and vasodilation by beta-adrenoceptors. Thus, intracellular dialysis of cADPR increased the cytoplasmic Ca(2+) concentration proximal to the plasma membrane in isolated arterial smooth muscle cells and induced a concomitant membrane hyperpolarization. Smooth muscle hyperpolarization mediated by cADPR, by beta-adrenoceptors, and by cAMP, respectively, was abolished by chelating intracellular Ca(2+) and by blocking RyRs, cADPR, and BK(Ca) channels with ryanodine, 8-amino-cADPR, and iberiotoxin, respectively. The cAMP-dependent protein kinase A antagonist N-(2-[p-bromocinnamylamino]ethyl)-5-isoquinolinesulfonamide hydrochloride (H89) blocked hyperpolarization by isoprenaline and cAMP, respectively, but not hyperpolarization by cADPR. Thus, cADPR acts as a downstream element in this signaling cascade. Importantly, antagonists of cADPR and BK(Ca) channels, respectively, inhibited beta-adrenoreceptor-induced artery dilation. We conclude, therefore, that relaxation of arterial smooth muscle by adenylyl cyclase-coupled receptors results, in part, from a cAMP-dependent and protein kinase A-dependent increase in cADPR synthesis, and subsequent activation of sarcoplasmic reticulum Ca(2+) release via RyRs, which leads to activation of BK(Ca) channels and membrane hyperpolarization. Topics: Animals; Arteries; Calcium; Cell Membrane; Cells, Cultured; Cyclic ADP-Ribose; Cyclic AMP; Cyclic AMP-Dependent Protein Kinases; Dose-Response Relationship, Drug; Electrophysiology; Enzyme Inhibitors; Isoproterenol; Isoquinolines; Peptides; Potassium Channels; Rats; Ryanodine; Ryanodine Receptor Calcium Release Channel; Sarcoplasmic Reticulum; Sulfonamides; Time Factors; Vasodilator Agents | 2003 |