h-89 and 2-aminoethoxydiphenyl-borate
h-89 has been researched along with 2-aminoethoxydiphenyl-borate* in 4 studies
Other Studies
4 other study(ies) available for h-89 and 2-aminoethoxydiphenyl-borate
Article | Year |
---|---|
Prostaglandin E2 induces chloride secretion through crosstalk between cAMP and calcium signaling in mouse inner medullary collecting duct cells.
Under conditions of high dietary salt intake, prostaglandin E2 (PGE2) production is increased in the collecting duct and promotes urinary sodium chloride (NaCl) excretion; however, the molecular mechanisms by which PGE2 increases NaCl excretion in this context have not been clearly defined. We used the mouse inner medullary collecting duct (mIMCD)-K2 cell line to characterize mechanisms underlying PGE2-regulated NaCl transport. When epithelial Na(+) channels were inhibited, PGE2 exclusively stimulated basolateral EP4 receptors to increase short-circuit current (Isc(PGE2)). We found that Isc(PGE2) was sensitive to inhibition by H-89 and CFTR-172, indicating that EP4 receptors signal through protein kinase A to induce Cl(-) secretion via cystic fibrosis transmembrane conductance regulator (CFTR). Unexpectedly, we also found that Isc(PGE2) was sensitive to inhibition by BAPTA-AM (Ca(2+) chelator), 2-aminoethoxydiphenyl borate (2-APB) (inositol triphosphate receptor blocker), and flufenamic acid (FFA) [Ca(2+)-activated Cl(-) channel (CACC) inhibitor], suggesting that EP4 receptors also signal through Ca(2+) to induce Cl(-) secretion via CACC. Additionally, we observed that PGE2 stimulated an increase in Isc through crosstalk between cAMP and Ca(2+) signaling; BAPTA-AM or 2-APB inhibited a component of Isc(PGE2) that was sensitive to CFTR-172 inhibition; H-89 inhibited a component of Isc(PGE2) that was sensitive to FFA inhibition. Together, our findings indicate that PGE2 activates basolateral EP4 receptors and signals through both cAMP and Ca(2+) to stimulate Cl(-) secretion in IMCD-K2 cells. We propose that these signaling pathways, and the crosstalk between them, may provide a concerted mechanism for enhancing urinary NaCl excretion under conditions of high dietary NaCl intake. Topics: Animals; Benzoates; Boron Compounds; Calcium; Calcium Signaling; Cell Line; Chloride Channels; Cyclic AMP; Cystic Fibrosis Transmembrane Conductance Regulator; Dinoprostone; Egtazic Acid; Flufenamic Acid; Inositol 1,4,5-Trisphosphate Receptors; Ion Transport; Isoquinolines; Kidney Medulla; Kidney Tubules, Collecting; Mice; Patch-Clamp Techniques; Receptors, Prostaglandin E, EP4 Subtype; Sodium Channel Blockers; Sodium Channels; Sodium Chloride; Sulfonamides; Thiazolidines | 2014 |
Ouabain-induced stimulation of sodium-hydrogen exchange in rat optic nerve astrocytes.
Sodium-dependent transporters are inhibited indirectly by the Na-K-ATPase inhibitor ouabain. Here we report stimulation of sodium-hydrogen exchange (NHE) in ouabain-treated cells. BCECF was used to measure cytoplasmic pH in cultured rat optic nerve astrocytes. Ammonium chloride was applied to acid load the cells. On removal of ammonium chloride, cytoplasmic pH fell abruptly, then gradually recovered toward baseline. Ouabain (1 microM) did not change cell sodium content, but the rate of pH recovery increased by 68%. Ouabain speeded pH recovery both in the presence and absence of bicarbonate. In bicarbonate-free medium, dimethylamiloride, an NHE inhibitor, eliminated the effect of 1 microM ouabain on pH recovery. Western blot analysis showed an NHE1 immunoreactive band but not NHE2, NHE3, or NHE4. Immunoprecipitation studies showed phosphorylation of NHE1 in cells treated with 1 microM ouabain. Ouabain evoked an increase of cAMP, and the effect of 1 microM ouabain on pH recovery was abolished by H-89, a protein kinase A inhibitor. 8-Bromoadenosine-cAMP increased the pH recovery rate, and this recovery was not further increased by ouabain. Although 1 microM ouabain did not alter cytoplasmic calcium concentration, it stimulated calcium entry after store depletion, a response abolished by 2-APB. Ouabain-induced stimulation of pH recovery was suppressed by inhibitors of capacitative calcium entry, SKF-96365, and 2-APB, as well as the cytoplasmic calcium chelator BAPTA. The cAMP increase in ouabain-treated cells was abolished by BAPTA and 2-APB. Taken together, the results are consistent with increased capacitative calcium entry and subsequent cAMP-PKA-dependent stimulation of NHE1 in ouabain-treated cells. Topics: Amiloride; Ammonium Chloride; Animals; Astrocytes; Boron Compounds; Calcium; Cells, Cultured; Cyclic AMP-Dependent Protein Kinases; Fluoresceins; Fluorescent Dyes; Hydrogen-Ion Concentration; Imidazoles; Ion Channel Gating; Isoquinolines; Optic Nerve; Ouabain; Rats; Sodium; Sodium-Hydrogen Exchanger 1; Sodium-Hydrogen Exchangers; Sulfonamides | 2008 |
Role of store-operated calcium channels and calcium sensitization in normoxic contraction of the ductus arteriosus.
At birth, the increase in oxygen causes contraction of the ductus arteriosus, thus diverting blood flow to the lungs. Although this contraction is modulated by substances such as endothelin and dilator prostaglandins, normoxic contraction is an intrinsic property of ductus smooth muscle. Normoxic inhibition of potassium channels causes membrane depolarization and calcium entry through L-type calcium channels. However, the studies reported here show that after inhibition of this pathway there is still substantial normoxic contraction, indicating the involvement of additional mechanisms.. Using ductus ring experiments, calcium imaging, reverse-transcription polymerase chain reaction, Western blot, and cellular electrophysiology, we find that this depolarization-independent contraction is caused by release of calcium from the IP3-sensitive store in the sarcoplasmic reticulum, by subsequent calcium entry through store-operated channels, and by increased calcium sensitization of actin-myosin filaments, involving Rho-kinase.. Much of the normoxic contraction of the ductus arteriosus at birth is related to calcium entry through store-operated channels, encoded by the transient receptor potential superfamily of genes, and to increased calcium sensitization. A clearer understanding of the mechanisms involved in normoxic contraction of the ductus will permit the development of better therapy to close the patent ductus arteriosus, which constitutes approximately 10% of all congenital heart disease and is especially common in premature infants. Topics: Animals; Arachidonic Acids; Boron Compounds; Calcium; Calcium Channel Blockers; Calcium Channels, L-Type; Calcium Signaling; Cytosol; Ductus Arteriosus; Endocannabinoids; Imidazoles; In Vitro Techniques; Indoles; Intracellular Signaling Peptides and Proteins; Isoquinolines; Maleimides; Menthol; Mibefradil; Muscle Contraction; Nifedipine; Niflumic Acid; Oxidation-Reduction; Oxygen; Patch-Clamp Techniques; Polyunsaturated Alkamides; Potassium Channels; Protein Serine-Threonine Kinases; Rabbits; rho-Associated Kinases; Ruthenium Red; Sulfonamides; Tetraethylammonium; Thapsigargin; Thiourea | 2006 |
Progesterone inhibits gallbladder motility through multiple signaling pathways.
Progesterone (P) has an inhibitory effect on the contractility of gastrointestinal smooth muscle, including the gallbladder. Since P levels are elevated during pregnancy, a biliary stasis may develop during pregnancy that is characterized by an increase in the fasting and residual volumes and by a decrease in emptying capacity. This study investigates the effect of P and two metabolites on contraction in guinea pig gallbladder strips. P induced a concentration-dependent relaxation in guinea pig gallbladder strips precontracted with cholecystokinin octapeptide (CCK). Pretreatment of gallbladder strips with P (50 microM) also reduced the amount of CCK-induced tension. Nifedipine (1 microM) produced a similar effect. Pretreatment of the strips with PKA inhibitor 14--22 amide myristolated (180 nM) or the PKG inhibitor KT5823 (1.2 microM) either separately or in combination significantly reduced the amount of P-induced relaxation. Rp-cAMPs (0.1mM) or H-89 (10 microM) separately or in combination significantly reduced the P-effect; however, the combination of agents produced the largest reduction. Genistein (1 microM), an inhibitor of protein tyrosine kinases, significantly (p<0.01) reduced the amount of P-induced relaxation. The use of strontium in the Kreb's solution as a substitute for Ca(2+) significantly (p<0.01) reduced the amount of CCK-induced tension. Pretreatment of the strips with 2-APB (26 microM), an inhibitor of IP(3,) induced Ca(2+) release, produced a significant (p<0.01) reduction in P-induced relaxation. We conclude that P inhibits gallbladder motility rapidly by nongenomic actions of the hormone. Several pathways that include tyrosine kinase and PKA/cAMP activity may mediate this effect. Topics: 17-alpha-Hydroxyprogesterone; 20-alpha-Dihydroprogesterone; Animals; Boron Compounds; Calcium; Carbazoles; Carrier Proteins; Cholecystokinin; Cyclic AMP-Dependent Protein Kinases; Cyclic GMP-Dependent Protein Kinases; Gallbladder; Gallbladder Emptying; Genistein; Guinea Pigs; In Vitro Techniques; Indoles; Isoquinolines; Male; Muscle Contraction; Muscle Relaxation; Muscle, Smooth; Nifedipine; Peptide Fragments; Progesterone; Protein Kinase Inhibitors; Signal Transduction; Strontium; Sulfonamides | 2005 |