gymnodimine has been researched along with pectenotoxin-2* in 6 studies
6 other study(ies) available for gymnodimine and pectenotoxin-2
Article | Year |
---|---|
Occurrence and distribution of lipophilic phycotoxins in a subtropical bay of the South China Sea.
Lipophilic phycotoxins (LPs) pose significant threats to the health of marine mammals, birds, and human beings. The distribution and components of lipophilic phycotoxins contamination in subtropical area in the South China Sea are rarely known. This study systematically assessed the composition, concentration, and distribution of typical LPs in a typical subtropical bay, Daya Bay located in the South China Sea. Phytoplankton, seawater, suspended particulate matter, sediments, and shellfish samples were simultaneously collected from Daya Bay, and analyzed using liquid chromatography with tandem mass spectrometry. Okadaic acid, dinophysistoxins-1, pectenotoxins-2, yessotoxin and its derivate homo-yessotoxin, azaspiracid-2, 13-desmethyl spirolide C and gymnodimine were widely spread in multiple media in Daya Bay. Pectenotoxins-2 was the most widely distributed and highly concentrated toxin in the marine environments of Daya Bay. Toxin homo-yessotoxin was only detected in sediments and shellfish samples, and none of yessotoxin group components were found in phytoplankton and seawater, indicating that sediments were the major source of yessotoxin in shellfish. The study strongly demonstrated the lipophilic phycotoxins accumulated in shellfish are multisource, not only derived from toxigenic algae, but also from other marine media containing lipophilic phycotoxins. This study systematically distinguished multi-pathways of bioaccumulation of LPs in the marine shellfish. Topics: Animals; Bays; China; Chromatography, Liquid; Environmental Monitoring; Furans; Heterocyclic Compounds, 3-Ring; Humans; Hydrocarbons, Cyclic; Imines; Macrolides; Marine Toxins; Mollusk Venoms; Okadaic Acid; Oxocins; Phytoplankton; Pyrans; Seafood; Seawater; Shellfish; Spiro Compounds; Tandem Mass Spectrometry | 2020 |
Distribution Characteristics and Environmental Control Factors of Lipophilic Marine Algal Toxins in Changjiang Estuary and the Adjacent East China Sea.
Marine algal toxins, highly toxic secondary metabolites, have significant influences on coastal ecosystem health and mariculture safety. The occurrence and environmental control factors of lipophilic marine algal toxins (LMATs) in the surface seawater of the Changjiang estuary (CJE) and the adjacent East China Sea (ECS) were investigated. Pectenotoxin-2 (PTX2), okadaic acid (OA), dinophysistoxin-1(DTX1), and gymnodimine (GYM) were detected in the CJE surface seawater in summer, with concentration ranges of not detected (ND)-105.54 ng/L, ND-13.24 ng/L, ND-5.48 ng/L, and ND-12.95 ng/L, respectively. DTX1 (ND-316.15 ng/L), OA (ND-16.13 ng/L), and PTX2 (ND-4.97 ng/L) were detected in the ECS during spring. LMATs formed a unique low-concentration band in the Changjiang diluted water (CJDW) coverage area in the typical large river estuary. PTX2, OA, and DTX1 in seawater were mainly derived from Topics: China; Dinoflagellida; Environmental Monitoring; Estuaries; Furans; Heterocyclic Compounds, 3-Ring; Hydrocarbons, Cyclic; Imines; Macrolides; Marine Toxins; Oceans and Seas; Okadaic Acid; Phytoplankton; Pyrans; Seawater; Water Pollutants | 2019 |
Contamination status of lipophilic marine toxins in shellfish samples from the Bohai Sea, China.
Lipophilic marine toxins in shellfish pose significant threats to the health of seafood consumers. To assess the contamination status of shellfish by lipophilic marine toxins in the Bohai Sea, nine species of shellfish periodically collected from five representative aquaculture zones throughout a year were analyzed with a method of liquid chromatography-tandem mass spectrometry (LC-MS/MS). Lipophilic marine toxins, including okadaic acid (OA), dinophysistoxin-1 (DTX1), pectenotoxin-2 (PTX2), yessotoxin (YTX), homo-yessotoxin (homo-YTX), azaspiracids (AZA2 and AZA3), gymnodimine (GYM), and 13-desmethyl spirolide C (13-DesMe-C), were detected in more than 95 percent of the shellfish samples. Toxins PTX2, YTX, 13-DesMe-C and GYM were predominant components detected in shellfish samples. Scallops, clams and mussels accumulated much higher level of lipophilic marine toxins compared to oysters. Toxin content in shellfish samples collected from different sampling locations showed site-specific seasonal variation patterns. High level of toxins was found during the stages from December to February and June to July in Hangu, while from March to April and August to September in Laishan. Some toxic algae, including Dinophysis acuminata, D. fortii, Prorocentrum lima, Gonyaulax spinifera and Lingulodinium polyedrum, were identified as potential origins of lipophilic marine toxins in the Bohai Sea. The results will offer a sound basis for monitoring marine toxins and protecting the health of seafood consumers. Topics: Animals; Bivalvia; China; Chromatography, Liquid; Dinoflagellida; Furans; Heterocyclic Compounds, 3-Ring; Hydrocarbons, Cyclic; Imines; Macrolides; Marine Toxins; Mollusk Venoms; Okadaic Acid; Ostreidae; Oxocins; Pyrans; Seafood; Shellfish; Spiro Compounds; Tandem Mass Spectrometry; Water Pollutants, Chemical | 2019 |
Lipophilic marine toxins discovered in the Bohai Sea using high performance liquid chromatography coupled with tandem mass spectrometry.
Some dinoflagellates can produce lipophilic marine toxins, which pose potent threats to seafood consumers. In the Bohai Sea, an important semi-closed inland sea with intensive mariculture industry in China, there is little knowledge concerning lipophilic marine toxins and their potential threats. In this study, net-concentrated phytoplankton samples were periodically collected from 5 typical mariculture zones around the Bohai Sea, including Laishan (LS), Laizhou (LZ), Hangu (HG), Qinhuangdao (QHD) and Huludao (HLD) in 2013 and 2014, and a method using high performance liquid chromatography (HPLC) coupled with a Q-Trap mass spectrometer was applied to analyze seven representative lipophilic marine toxins, including okadaic acid (OA), dinophysistoxin-1 (DTX1), pectenotoxin-2 (PTX2), yessotoxin (YTX), azaspiracid-1 (AZA1), gymnodimine (GYM), and 13-desmethyl spirolide C (desMeC). The method had high sensitivity and repeatability, and exhibited satisfactory recoveries for most of the lipophilic marine toxins (92.1-108%) except for AZA1 (65.8-68.9%). Nearly all the lipophilic marine toxins could be detected in phytoplankton samples from the Bohai Sea. OA, DTX1 and PTX2 were predominant components and present in most of the phytoplankton samples. The maximum content of lipophilic marine toxin in phytoplankton samples concentrated from seawater (OA 464 pg L Topics: Animals; China; Chromatography, High Pressure Liquid; Dinoflagellida; Furans; Heterocyclic Compounds, 3-Ring; Hydrocarbons, Cyclic; Hydrophobic and Hydrophilic Interactions; Imines; Macrolides; Marine Toxins; Mollusk Venoms; Okadaic Acid; Oxocins; Phytoplankton; Pyrans; Seafood; Spiro Compounds; Tandem Mass Spectrometry | 2017 |
Distribution of Marine Lipophilic Toxins in Shellfish Products Collected from the Chinese Market.
To investigate the prevalence of lipophilic marine biotoxins in shellfish from the Chinese market, we used hydrophilic interaction liquid chromatography-tandem mass spectrometry (LC-MS/MS) to measure levels of okadaic acid (OA), azaspiracid (AZA1), pectenotoxin (PTX2), gymnodimine (GYM), and spirolide (SPX1). We collected and analyzed 291 shellfish samples from main production sites along a wide latitudinal transect along the Chinese coastline from December 2008 to December 2009. Results revealed a patchy distribution of the five toxins and highlighted the specific geographical distribution and seasonal and species variation of the putative toxigenic organisms. All five lipophilic marine biotoxins were found in shellfish samples. The highest concentrations of OA, AZA1, PTX2, GYM, and SPX1 were 37.3, 5.90, 16.4, 14.4, and 8.97 μg/kg, respectively. These values were much lower than the legislation limits for lipophilic shellfish toxins. However, the value might be significantly underestimated for the limited detection toxins. Also, these toxins were found in most coastal areas of China and were present in almost all seasons of the year. Thus, these five toxins represent a potential threat to human health. Consequently, studies should be conducted and measures should be taken to ensure the safety of the harvested product. Topics: Animals; Bivalvia; China; Chromatography, Liquid; Furans; Heterocyclic Compounds, 3-Ring; Hydrocarbons, Cyclic; Imines; Macrolides; Marine Toxins; Okadaic Acid; Ostreidae; Pectinidae; Pyrans; Shellfish; Spiro Compounds; Tandem Mass Spectrometry | 2015 |
Graphene based pipette tip solid phase extraction of marine toxins in shellfish muscle followed by UPLC-MS/MS analysis.
Graphene is a novel carbonic material with great potentials for the use as sorbent due to its ultrahigh surface area. Herein, we report the use of graphene as sorbent in solid-phase extraction (SPE) using pipette tip as cartridge namely GPT-SPE, together with ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS), for the analysis of lipophilic marine toxins (LMTs), including yessotoxins (YTX), okadaic acid (OA), dinophysistoxin-1 (DTX1), gymnodimine (GYM), spirolides-1 (SPX1), pectenotoxin-2 (PTX2) and azaspiracid-1 (AZA1) in shellfish. The GPT-SPE procedure was optimized and the performance of graphene was fully validated. Results with high-sensitivity and good reproducibility was obtained and compared with that of other sorbents like C18 silica, multi-walled carbon nanotubes (MWCNTs), commercial Oasis HLB, and Strata-X for the extraction of LMTs, which showed superiority and advantages of graphene, such as good recoveries, stability and compatibility with various solvents. In order to exhibit the potentials of graphene as an excellent sorbent material, 67 mussel samples from six coastal cities of China were analyzed. OA was found to be the dominant contaminant, while YTX was also detected with low level. Topics: Adsorption; Animals; Bivalvia; Chromatography, High Pressure Liquid; Furans; Graphite; Heterocyclic Compounds, 3-Ring; Hydrocarbons, Cyclic; Imines; Macrolides; Marine Toxins; Mollusk Venoms; Muscles; Okadaic Acid; Oxocins; Pyrans; Reproducibility of Results; Sensitivity and Specificity; Shellfish; Solid Phase Extraction; Spiro Compounds; Tandem Mass Spectrometry | 2013 |