gymnodimine has been researched along with domoic-acid* in 2 studies
2 other study(ies) available for gymnodimine and domoic-acid
Article | Year |
---|---|
Occurrence of marine algal toxins in oyster and phytoplankton samples in Daya Bay, South China Sea.
The occurrence and seasonal variations of marine algal toxins in phytoplankton and oyster samples in Daya Bay (DYB), South China Sea were investigated. Two Dinophysis species, namely, D. caudata and D. acuminata complex, were identified as Okadaic acid (OA)/pectenotoxin (PTX) related species. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis demonstrated that 2.04-14.47 pg PTX2 per cell was the predominant toxin in single-cell isolates of D. caudata. D. acuminata was not subjected to toxin analysis. The occurrence of OAs in phytoplankton concentrates of net-haul sample coincided with the presence of D. accuminata complex, suggesting that this species is most likely an OA producer in this sea area. OA, dinophysistoxins-1 (DTX1), PTX2, PTX2sa, gymnodimine (GYM), homoyessotoxin (homoYTX), and domoic acid (DA) demonstrated positive results in net haul samples. To our best knowledge, this paper is the first to report the detection of GYM, DA, and homoYTX in phytoplankton samples in Chinese coastal waters. Among the algal toxins, GYM demonstrated the highest frequency of positive detections in phytoplankton concentrates (13/17). Five compounds of algal toxins, including OA, DTX1, PTX2, PTX2sa, and GYM, were detected in oyster samples. DA and homoYTX were not detected in oysters despite of positive detections for both in the phytoplankton concentrates. However, neither the presence nor absence of DA in oysters can be determined because extraction conditions with 100% methanol used to isolate toxins from oysters (recommended by the EU-Harmonised Standard Operating Procedure, 2015) would likely be unsuitable for this water-soluble toxin. In addition, transformation of DA during the digestion process of oysters may also be involved in the negative detections of this toxin. GYM exhibited the highest frequency of positive results in oysters (14/17). OAs were only detected in the hydrolyzed oyster samples. The detection rates of PTX and PTX2sa in oysters were lower than those in the net haul samples. Topics: Animals; Bays; China; Chromatography, Liquid; Dinoflagellida; Environmental Monitoring; Heterocyclic Compounds, 3-Ring; Hydrocarbons, Cyclic; Imines; Kainic Acid; Marine Toxins; Okadaic Acid; Ostreidae; Phytoplankton; Pyrans; Tandem Mass Spectrometry; Water Pollutants, Chemical | 2017 |
Quantitative 1H NMR with external standards: use in preparation of calibration solutions for algal toxins and other natural products.
We examine the use of external standards for quantitative measurement by 1H NMR of solution concentrations of natural products and other low molecular weight, hydrogen-containing compounds and show that precision and accuracy ca. 1% is obtainable with a commercial 11.7 T spectrometer when standards and analytes are contained in separate but identical sealed precision glass NMR tubes. Numerous factors contributing to the intensity of the NMR signals are evaluated. Precise measurements of 360 degrees pulse lengths for each sample provide direct corrections for variations in probe Q-factor that enable samples in different solvents to be compared, provided single-coil excitation and detection is used throughout. Samples need not be prepared in deuterated solvents if the 1H spectra of the solvents are simple enough for peak suppression by presaturation. The approach is particularly suitable for hazardous materials kept in sealed tubes and for the preparation of certified calibration solution reference materials for use with LC-MS and other techniques where deuterated solvents should be avoided. Topics: Biological Products; Calibration; Chromatography, Liquid; Deuterium; Eukaryota; Heterocyclic Compounds, 3-Ring; Hydrocarbons, Cyclic; Imines; Kainic Acid; Magnetic Resonance Spectroscopy; Marine Toxins; Okadaic Acid; Reproducibility of Results; Saxitoxin; Sensitivity and Specificity; Solutions; Solvents | 2005 |